
TERM PROJECT I: VISUALIZING MINIMAX, ALPHA-BETA PRUNING AND CSPS ON THE WEB

1

Visualizing Minimax, Alpha-Beta Pruning and Constraint Satisfaction

Problems on the Web

Alexander Costa

Department of Computer Science, University of Georgia

ALEXANDER.COSTA@UGA.EDU

ABSTRACT

Classical artificial intelligence (AI) algorithms like Minimax and Alpha-Beta pruning for

adversarial search problems and Backtracking (BT), Forward checking (FC), and Maintaining Arc

Consistency (MAC) for constraint satisfaction problems are integral to any introductory artificial

intelligence course. In spite of their ubiquity, the methods for teaching these algorithms often center

around a block of abstract, and at times elusive, pseudocode which may contain a number of

undefined functions or constructs. Consequently, these pseudocodes and accompanying

explanations are a difficult framework from which to learn and understand these classical

algorithms to any enduring degree. Frequently, visualizations are sought after to supplement

learning of these algorithms by providing a more intuitive framework from which to construct a

lasting understanding. While visualizations of many basic tree and graph searching algorithms

exist, there are few which cover the specific aforementioned algorithms. In this work we present a

selection of easily accessible and intuitive web-based interactive visualizations of the Minimax and

CSP algorithms for use in an introductory-level academic environment.

Index Terms: algorithm visualization, minimax, alpha-beta pruning, constraint satisfaction

problems, CSP, backtracking, forward checking, arc consistency

I. INTRODUCTION

There are a number of algorithms central to any

level of education in artificial intelligence and

which are covered in virtually all introductory level

artificial intelligence course. Among these classical

algorithms are the adversarial search algorithms

Minimax and Alpha-Beta pruning and the constraint

satisfaction problem (CSP) solving techniques

Backtracking (BT), Forward Checking (FC), and

Maintaining Arc Consistency (MAC). Though they

are not prohibitively complex, the learning of these

algorithms often constitute a student’s first foray

into the world of search algorithms and, for many

new students, the task of developing an enduring

understanding these algorithms is of considerable

difficulty. In spite these algorithms’ ubiquity, the

pedagogical techniques employed to teach these

algorithms are frequently unintuitive, inaccessible,

or inefficient.

Most often, students are presented with a block of

high-level pseudocode (which may lack a number

of undefined functions or constructs) and an

accompanying explanation covering one or two toy

examples of the algorithm at work. Though the

presentation of a formal definition is, of course,

critical to the teaching of these algorithms, the

pseudocode and toy examples alone are often not

enough to furnish students with a lasting impression

of these algorithms. The pseudocode presented is

generally too abstract and elusive to commit to

memory, and the toy examples explored are often

too trivial and leave students with an incomplete and

ungeneralizable understanding of these algorithms.

Even though these teaching methods get the job

done, and with time could provide a thorough

enough understanding, they could easily be

improved with the use of interactive computer

visualizations. Visualization is a powerful

technique for the learning of abstract information

and constitutes the perfect learning tool for these

mailto:alexander.costa@uga.edu

ALEXANDER COSTA

2

classical algorithms whose search spaces can all be

visualized as a graph or tree structure. In providing

visual constructions of these algorithms’ steps and

search spaces, students are presented with a more

concrete and intuitive framework around which to

base their understanding. Visual representations are

easier to commit to memory than pseudocode, and

visualizations themselves deliver the same benefits

as the exploration of toy examples and more since

they may be extended beyond the purely trivial.

Interactive visualizations facilitate even greater

advantage as the student is equipped with the ability

to define search spaces to their liking, explore all

different kinds of examples, and investigate any

particular misunderstandings.

The rest of this paper is organized into a number of

sections II-IV. Section II describes existing

implementations of adversarial search and CSP

algorithm visualizations as well as their strengths

and shortcomings. Section III describes our

implementations of adversarial search and CSP

algorithm visualizations, as well as their strengths

and shortcomings. Section IV provides a conclusion

and a discussion of the ways in which the current

work could be extended.

II. RELATED WORKS

Algorithm visualization tools can generally be split

into two categories: web-based tools, which are

accessible over the internet and render in an internet

browser, and non-web-based tools which are

downloaded and run on a client machine. In this

section we limit our purview to live, web-based

implementations due to the inaccessibility and

unpopularity of non-web-based tools. Students are

generally uninterested in the downloading of

programs and accompanying software packages

merely for the visualization of these algorithms.

Though many visualization programs exist for

classical graph searching techniques likes depth-

first search and breadth-first search, visualization

programs for adversarial search algorithms and CSP

solving techniques are few and far in between, or in

the case of CSP solving techniques, completely

nonexistent.

In the case of adversarial search algorithms two

popular implementations exist: one by José Manuel

Torres (Torres) [1] and one by Leandro Ricardo

Neumann, et al. (Neumann) [2]. Both of which

implement the Minimax algorithm as well as Alpha-

Beta pruning.

TORRES MINIMAX VISUALIZATION

The Torres program presents the search space of the

Minimax algorithm as tree under a control panel

used to define the structure of the tree. The program

uses a textual input for tree construction, meaning

search spaces are defined by two strings of numbers:

a list of numbers defining the number of children of

each node and a list of numbers defining the utilities

(or heuristic values) of each leaf node. Once a

search space is constructed the user may step

through the Alpha-Beta pruning algorithm one

instruction at a time or opt to run the entire

algorithm in an animated sequence. The Torres

implementation only allows you to run the Alpha-

Beta pruning algorithm and not the simple Minimax

algorithm alone. A screenshot of the Torres program

is given in Figure 1.

Visually, the program is of mediocre quality and the

tree definition mechanism is poorly defined and

hard to understand, often times leading to the

construction of invalid trees or tree formations for

which the user did not intend. An incomprehensible

“message” is given which presumably defines the

tree in a structured text format. When large trees are

constructed, nodes often occlude one another,

making the visualization hard to follow. MAX states

are indicated by upwards pointing triangles and

MIN states are indicated by downwards pointing

triangles, following the generally accepted

convention.

During algorithm execution, current game states are

highlighted in yellow and state utilities are

presented to the left of each node. Alpha and beta

values are also presented to the left of each game

state, indicating the values of alpha and beta at the

time of that state’s evaluation. There are cases when

the alpha and beta values are not visually updated

(though the algorithm still functions correctly), and

the presentation of alpha and beta values at each

TERM PROJECT I: VISUALIZING MINIMAX, ALPHA-BETA PRUNING AND CSPS ON THE WEB

3

state is minorly misleading since alpha and beta are

global to the entire algorithm and each state does not

have its own associated alpha and beta value. If a

state is pruned during execution, the edge

connecting that state and its parent is marked with a

red X. After the algorithm has finished executing,

the optimal path for MAX is highlighted in blue.

The user may not specify that MIN goes first.

Figure 1: Screenshot of the Torres visualization.

Overall, the Torres program gets the job done, but

the textual input for tree construction is extremely

unintuitive and difficult to use, there are a number

of issues with the presentation of alpha and beta

values as mentioned above, and the program lacks

any explanatory or pedagogical material about the

Minimax or Alpha-Beta pruning algorithms.

NEUMANN MINIMAX VISUALIZATION

The Neumann program presents the search space of

the algorithm as a tree under a control panel for

executing and stepping through the algorithm

instructions. The program uses a graphical, click-

based input for tree construction, meaning the

search space is constructed by clicking on nodes to

add child nodes or edit utility values. Once a search

space is constructed the user may choose to execute

ALEXANDER COSTA

4

either the simple Minimax algorithm or the Alpha-

Beta pruning algorithm after which they may step

through each instruction of the algorithm or skip to

the end result of the program. The program also

allows users to step backwards through the

algorithm.

Visually, the program is of better quality than the

Torres program but is still lacking in many areas.

Large trees can be constructed without node

occlusion, but wide trees will occlude the

MAX/MIN labels presented at each layer of the tree.

The tree definition mechanism is much more

intuitive than that of the Torres program, but at the

cost of efficiency. It takes quite a long time to

construct large trees with many clicks and repeated

tasks, though a default example can be generated.

MAX and MIN states are both presented as circular

nodes, going against accepted conventions, and

instead indicated by labels to the left and right of

each tree layer. A screenshot of the Neumann

program is given in Figure 2.

Figure 2: Screenshot of the Neumann visualization.

During algorithm execution, current games states

are highlighted by a red border and state utilities are

presented in the center of each node. Alpha and beta

values are not visually represented during execution

of the Alpha-Beta pruning algorithm. If a state is

pruned during execution, the edge connecting that

state and its parent is marked with a red X, just as in

the Torres program. After the algorithm has finished

executing, the optimal path for MAX is not

indicated and the user must follow the child states

of the root with the same utility as the root. The user

may not specify that MIN goes first.

Overall, the Neumann program also gets the job

done and works accurately, but the graphical tree

definition input, while more intuitive, is extremely

slow to use. The program also lacks visual

indicators of important information like the values

of alpha and beta during Alpha-Beta pruning and the

optimal path for MAX after execution. The program

lacks any explanatory or pedagogical material about

TERM PROJECT I: VISUALIZING MINIMAX, ALPHA-BETA PRUNING AND CSPS ON THE WEB

5

the Minimax or Alpha-Beta pruning algorithms, as

well. In our work we shall seek to ameliorate many

of the shortcomings of these two works as well as

combine their strengths into one program.

As previously mentioned, our investigation yielded

no live, web-based CSP interactive visualizations,

so our discussion of related works concludes here.

III. OUR WORKS

In this work we aimed to create two interactive,

web-based visualization tools: one for Minimax and

Alpha-Beta pruning and one for the Backtracking

(BT), Forward Checking (FC), and Maintaining Arc

Consistency (MAC) solving techniques for CSPs.

TECHNOLOGIES USED

Because of their high familiarity, accessibility, and

ease-of-use, we opted to create a web-based

program, meaning it is universally accessible to

anyone with an internet browser and internet

connection and renders directly in a user’s internet

browser. Our program is implemented mostly in

JavaScript using the React user interface library,

with a small amount of additional HTML and CSS

code and is hosted on the author’s personal website

(https://alexcostaluiz.com/visualizations/).

MINIMAX PROGRAM

For the Minimax and Alpha-Beta pruning

visualization program, hereby referred to as the

Minimax program, we aimed to create a similar but

enhanced version of the programs discussed in

Section II, bridging their respective strengths while

avoiding their shortcomings and also pursuing new

ideas for enhancement. Important design choices to

considered while constructing this program include

the following:

o How best to accept input for tree construction.

o How best to visualize the search space (incl.

node shapes, labels, edges, utility values).

o How best to indicate the different instructions

of the Minimax and Alpha-Beta pruning

algorithms.

o How best to provide helpful explanatory

material which might aid a student in their

understanding of these algorithms.

INPUT FOR TREE CONSTRUCTION

To the first consideration, we opted to follow suit of

the Neumann program and use a graphical (or click-

based) input for tree construction. To avoid the

efficiency shortcomings of the Neumann program,

we implemented a number of changes which speed

up construction times and limit unnecessarily

repetitive tasks. First we split the tree construction

and utility specification into two distinct phases of

the visualization. By doing so, we can avoid any

small, difficult-to-click dropdown menus on node

clicks and instead directly perform the desired task

based on the visualization phase. Furthermore,

during tree construction, child-nodes-to-be follow

the cursor as they are placed in such a manner that

allows for speedy construction of successive nodes.

a)

b)

Figure 3: a) An example of our Minimax program during the tree construction mode. In the top left corner are mutually exclusive buttons BUILD

MODE and DATA MODE which allow users to toggle between tree construction and utility specification modes. The child node of N7 is currently

https://alexcostaluiz.com/visualizations/

ALEXANDER COSTA

6

being placed. Its slight transparency indicates that it does not yet exist, and its position follows the user’s cursor making it easy for users to place

nodes wherever they desire, and the creation child nodes of the node being currently placed require no mouse movements after the current node is

placed. b) An example of our Minimax program during the utility specification mode. The single input text box located at the top left accepts input

for all leaf nodes and automatically updates to the next leaf node with a missing utility after a user enters a utility for the previously selected leaf

node.

Our last optimization in this category was a

streamlined utility specification procedure which

uses only one text box and automatically selects

successive leaf nodes to be supplied a value.

Effectively, the user need only to type 𝑛 numbers,

where 𝑛 is the number of leaf nodes, with no

clicking or use of the cursor. Overall, our tree

construction procedure takes on a hybrid form of

both the textual and graphical forms seen in Section

II, maintaining the efficiency of the textual form

while also supplying the user with an intuitive and

fail-safe experience. Figure 3 presents examples of

each of these optimizations.

SEARCH SPACE VISUALIZATION

To the second consideration, we opted for simple,

convention-conforming visuals for the search space.

Like the Torres and Neumann programs, we

visualize the search space with a tree structure

placed under a control panel. Like the Torres

program, we identify game states with the

conventional shapes: an upwards pointing triangle

for MAX states and a downwards pointing triangle

for MIN states. Leaf nodes are drawn as circles to

avoid conflating them with the idea of a MAX or

MIN state. Node labels are provided above each

node to help distinguish each state from one

another. Edges are simple grey lines which may take

on other colors during algorithm execution. Lastly,

node utilities are rendered in the center of each

node. Figure 4 presents an example of a fully

constructed tree.

COLOR CODING FOR ALGORITHM STEPS

To the third consideration, we follow suit of the

Torres and Neumann programs by highlighting

nodes when they are relevant to the current

instruction of the algorithm. Unlike the existing

programs, however, we extend this highlighting

method with a color-coded scheme wherein

different colors indicate different types of

instructions of the algorithm.

Figure 4: An example of fully defined tree in our Minimax program.

Notice the clear shape distinction between MAX, MIN, and leaf nodes.

For example, a currently selected game state’s node

is highlighted in yellow, but a node whose utility is

being updated is highlighted in blue. The full color

code is as follows:

𝑌𝑒𝑙𝑙𝑜𝑤 ⇒ 𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑔𝑎𝑚𝑒 𝑠𝑡𝑎𝑡𝑒

𝐵𝑙𝑢𝑒 ⇒ 𝑎 𝑠𝑡𝑎𝑡𝑒 𝑤ℎ𝑜𝑠𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑃𝑖𝑛𝑘 ⇒ 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒 𝑤ℎ𝑜𝑠𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑

𝑃𝑢𝑟𝑝𝑙𝑒 ⇒ 𝑡𝑤𝑜 𝑛𝑜𝑑𝑒𝑠 𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑏𝑦 𝑢𝑡𝑖𝑙𝑖𝑡𝑦

Not only does this color code scheme offer more

information about the state of the algorithm to the

user than the existing programs, but after repeated

use of the program, users may become familiar with

the meaning of each color, allowing for quick and

intuitive understanding of any state of the

visualization. Edges also support a degree of color

coding as pruned edges are colored red, the edge

connecting two nodes that are being compared is

colored purple, and the final optimal path for the

root node is colored green. For Alpha-Beta pruning,

a single display of the current alpha and beta values

in the top left corner of the visualization window is

provided. This display is color coded as well,

appearing blue when either alpha or beta are being

updated to a new value and purple when alpha and

beta are being compared to one another. The use of

a single display for alpha and beta helps to solidify

the understanding that alpha and beta are global to

TERM PROJECT I: VISUALIZING MINIMAX, ALPHA-BETA PRUNING AND CSPS ON THE WEB

7

a)

b)

c)

d)

e)

f)

Figure 5: a) An example of a currently selected node. Here N2 is highlighted yellow, as the game state at N2 is currently being considered. b) An

example of a leaf node being evaluated. Here N10 is highlighted pink. c) An example of two nodes being compared. Here nodes N2 and N5 and

the edge connecting them is highlighted purple to indicate that they are being compared by MIN. d) An example of a node’s utility being updated.

Here the utility of state N2 is updated to 7 since the minimum of N2’s successor states is 7. e) An example of a pruned edge. Here the edge

connecting nodes N3 and N7 is highlighted red to indicate that there was no use for MIN to explore the children of state N3 any further. f) An

example of an optimal path for MAX. Here the edges connecting nodes N1 to N11 are highlighted green.

the entire algorithm and not a property of each game

state. Figure 5 presents examples of color-coded

elements during algorithm execution.

PEDAGOGICAL TOOLTIP SYSTEM

To the fourth consideration, we implemented a

tooltip system wherein explanations of each

algorithm instruction as well as the motivation

behind the more obscure ones are given at the

ALEXANDER COSTA

8

bottom of the visualization window during

algorithm execution. So as the user steps through

each algorithm, they are presented with a

description of what is actually occurring behind the

scenes, and in cases where the meaning of an

operation is harder to grasp, an explanation of the

purpose and consequences of the operation may also

be included. Figure 6 presents examples of our

tooltip system.

Figure 6: An example of a tooltip for an alpha-beta compare operation. As the alpha-beta compare operation may be one of the hardest aspects of

the Alpha-Beta pruning algorithm to grasp, our tooltip here includes detailed information about the motivation and consequences behind the alpha-

beta compare instruction, as it relates to the current algorithm state.

Beyond the aforementioned considerations, our

Minimax program boasts a few other improvements

over existing implementations. Firstly, either MAX

or MIN may be specified as the player who moves

first. This simple improvement makes the program

more generalizable and can help users understand

the different consequences that arise due to the order

of play. Secondly, we provide a legend below the

visualization window detailing the semantic

meaning of different shape and coloring schemes

which help to make the program more user-friendly

and intuitive, in general. Finally, our program

presents a cleaner user-interface than the existing

implementations which avoids the occlusion of

important elements even with large trees and gives

clear instructions to the user before they begin using

the program. Figure 7 presents the entire interface

for the Minimax program.

SHORTCOMINGS

While we believe our Minimax program to

constitute a significant improvement over the

existing implementations in terms of usability,

intuitiveness, generalizability, and effectiveness at

education users about the Minimax algorithm, a

number of shortcomings still exist.

TERM PROJECT I: VISUALIZING MINIMAX, ALPHA-BETA PRUNING AND CSPS ON THE WEB

9

Figure 7: The entire user interface for the Minimax program.

ALEXANDER COSTA

10

Firstly, the visualization window is rather small

relative to the size of each node, meaning you

cannot fit large trees within the visualization

window without being forced to place nodes atop

one another. While considerable research and effort

were put into the pursuit of a zoomable interface, no

solutions were of satisfactory performance, yet. For

now, to get around this issue and construct larger

trees, the entire window may be zoomed out (Ctrl+-

or Cmd+- (Mac)). In doing so, the visualization

window will stay the same size, but the size of nodes

will get considerably smaller, allowing more to fit

within the visualization window.

Secondly, the program is missing the

Expectiminimax algorithm, which is a fundamental

enough algorithm for adversarial search that we

believe it to be a considerable drawback that our

program does not implement it.

Lastly, tree construction could be made more

efficient by the ability to delete single nodes instead

of only the option to delete all nodes. The

complexity of implementing such a feature,

however, quickly outweighed the benefit of the

feature itself, though with more time it would

certainly be worth implementing.

CSP PROGRAM

Unfortunately, due to time constraints, an

implementation of the CSP program we wished to

create could not be completed. Though we cannot

offer a live, web-based program for the CSP

algorithms discussed in this work, the planning and

design stages were completed. In this section we

present all of our planning and design work

completed for the CSP program, regrettably without

helpful visual aids.

For the CSP visualization program we aimed to

create a first-of-its-kind, interactive visualization

program which visualizes a few of the fundamental

CSP solving techniques including Backtracking

(BT), Forward Checking (FC), and Maintaining Arc

Consistency (MAC). Many of the more complex

CSP solving techniques build off of these

fundamental methods by adding heuristic measures

to different parts of the algorithm, so we believe it

sufficient to constrain our CSP program to

visualizing only these three algorithms.

As previously stated, no live, web-based CSP

visualization programs were discovered by our

investigation. Based on the CSP programs that were

discovered in our investigation, it seems that

programs implementing CSPs primarily opt to focus

on being useful for industrial purposes instead of

academic purposes. This may help explain the lack

of live, web-based CSP visualization tools since

industrial uses of CSP tools are less likely to warrant

a visualization component than academic uses and

are more likely to desire implementations in much

faster programming languages than JavaScript. As

no implementations exist from which to begin our

planning and design, we present a novel approach to

interactive CSP visualization designed from

scratch.

Some important design choices to consider before

implementing the CSP program are as follows:

o How best to visualize the CSP itself.

o How best to accept input for CSP construction.

o How best to visualize the search space of each

algorithm.

o How best to indicate the different instructions

of the BT, FC, and MAC algorithms.

o How best to provide helpful explanatory

material which might aid a student in their

understanding of these algorithms.

CSP VISUALIZATION

To the first consideration, we opt to visualize the

CSP itself as a constraint graph. Constraint graphs

are graphs in which each node corresponds to a

variable of the CSP problem, and an edge connects

any two variables that participate in a constraint

with one another [3]. Constraint graphs are a very

useful and intuitive visualization for a CSP problem

as they capture all variable and constraint

information into one unified structure and leave

only the domains of variables to be represented

elsewhere. Much like in the Minimax program, we

will present the constraint graph in a window below

a control panel consisting of various buttons for

manipulating the visualization state.

TERM PROJECT I: VISUALIZING MINIMAX, ALPHA-BETA PRUNING AND CSPS ON THE WEB

11

INPUT FOR CSP CONSTRUCTION

To the second consideration, we will borrow from

the Minimax program the graphical, point-and-click

input for tree construction and extend it to be

capable of creating graphs. The only change

necessary will be to allow newly constructed edges

to connect to already existing nodes instead of only

to new child nodes. At this point, we will have a

method for defining all the variables that exist in the

CSP as well as the number of constraints and which

variables participate in each constraint. Left to

define are the domains of each variable and the

relations which define each constraint. For defining

the domains of each variable, we will again borrow

from the Minimax program the utility specification

procedure and extend it to accept a list of numbers

instead of only a single utility value. This way, a

finite domain of numbers can be specified for each

variable in the CSP. As domains are specified, a

node table below the visualization window will be

populated with the domain of each node since they

are not easily representable inside the node

themselves. Finally, only the definition of constraint

relations remains.

Defining constraint relations, however, constitutes

the most difficult definition for which to define an

input procedure. Constraint relations may be

defined by an explicit list of all variable assignments

which satisfy the constraint or an abstract logic

and/or arithmetic relation (e.g., 𝑋 + 5 < 𝑌, (𝑋 >

 10) ∧ (𝑋 ∗ 2 < 𝑌), etc.). To support both these

conventions we will extend the Minimax program

utility specification procedure to automatically

select edges missing relation data and to accept

input as either a list of lists of numbers representing

the list of variable assignment which satisfy the

given constraint (so in this case, variable

assignments are represented as lists of numbers) or

a JavaScript code expression which uses the

variable names of the given constraint and

JavaScript logical and/or arithmetic operators to

define the constraint relation. Only JavaScript

expressions which strictly evaluate to a boolean will

be accepted. By using JavaScript expressions, we

avoid the burden of defining our own logical and

arithmetic parser and can simply execute the

inputted JavaScript expression using JavaScript

itself. As constraint relation definitions are

specified, an edge table below the visualization

window will be populated with the variables and

relation of each edge.

SEARCH SPACE VISUALIZATION

To the third consideration, we opt to visualize the

search space as a tree since all three algorithms

considered in this work explore it as such. During

algorithm execution, the constraint graph

representing the CSP in the visualization window is

swapped out for the tree of the search space. Instead

of completely obscuring the constraint graph from

view, however, we opt to place it in a small, scaled

down window within the top right corner of the

main visualization window. Clicking this scaled

down inset window allows the constraint graph to

be shown in full view again.

COLOR CODING FOR ALGORITHM STEPS

To the fourth consideration, we follow suit of our

Minimax program and use a color-coded system for

different algorithm instructions. For all three

algorithms explored in this work, the procedure

followed by each algorithm can be decomposed into

three main parts: variable selection, inference, and

the recursive call. For variable selection, all

unassigned variables will be highlighted purple in

the domain table and compared using whichever

variable selection procedure has been selected.

Once a variable is chosen according to the selected

procedure it will be highlighted blue and the search

space tree will be expanded by one layer with all the

potential assignments for the selected variable. All

potential assignments are then iterated over and

inference and a recursive call to the algorithm are

performed on each potential assignment. When a

potential assignment is the current assignment being

considered in the iteration, it is highlighted yellow.

During inference it is highlighted pink. If a value

choice leads to failure, then it is highlighted red and

a subsequent assignment is selected, or if the end of

the iteration has been reached, backtracking occurs.

If a recursive call is made, the whole procedure is

started over again.

ALEXANDER COSTA

12

PEDAGOGICAL TOOLTIP SYSTEM

To the fifth consideration, we follow suit of our

Minimax program and provide a tooltip system

which explains each step of the chosen algorithm as

the user steps through them. We shall display

tooltips in the same manner as they are displayed in

the Minimax program, at the bottom of the

visualization window. For instructions which are

harder to understand the motivation for or

consequences of, we will provide additional

explanatory information which hopefully

effectively communicates the motivation and/or

consequences.

Beyond our solutions to the above aforementioned

considerations, we shall provide a legend, below all

other elements, of the color code used, in the same

manner that a legend is presented in the Minimax

program. Additionally, instructions will be provided

at the top of the CSP visualization page detailing the

input mechanisms for constraint graph construction,

domain specification, and constraint relation

specification.

IV. CONCLUSION

In this work we have discussed the shortcomings of

current techniques for teaching classical AI

algorithms and the potential for powerful interactive

visualizations to ameliorate many of these

shortcomings. We have covered the strengths and

shortcomings of related software programs which

implement the Minimax and Alpha-Beta pruning

algorithms. And lastly we have covered the

programs of this work, along with the

considerations assessed and decisions made during

the planning and design processes of our program

creation and the resulting strengths and

shortcomings of the finished products.

As is rather obvious, there are a number of ways in

which the work herein may be continued or

extended. Firstly, completion of the CSP program

detailed in Section III, which regrettably could not

be reached due to time constraints, could be

pursued. Secondly, there are a number of algorithm

variations or optimizations which could be added to

our visualization programs as a toggleable feature

much like the Alpha-Beta pruning in the Minimax

program which would serve to make the programs

even more generalized and allow users to explore or

become familiar with even more algorithms. For the

Minimax program, support for the Expectiminimax

algorithm which allows for the existence of chance

nodes in the search space, could be added to the

program. For the CSP program, support for many

toggleable heuristics including Minimum

Remaining Values (MRV), the degree heuristic, the

least-constraining-value heuristic, conflict-directed

backjumping, and the min-conflicts heuristic could

be added to the program.

In spite of our failure to create a CSP program, we

believe our Minimax program to constitute a

significant improvement over those previously

existing implementations and to be appropriate for

use in an introductory academic environment.

The Minimax program may be visited on the

author’s personal website: https://alexcostaluiz.com

/visualizations/.

REFERENCES

[1] Minimax game search algorithm with alpha-

beta pruning. (2011). [Online]. Available:

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta

.html

[2] UNISC - Trabalho de Inteligência Artificial.

(2012). [Online]. Available:

https://raphsilva.github.io/utilities/minimax_si

mulator/

[3] S. J. Russell, P. Norvig, and E. Davis, Artificial

intelligence : a modern approach, 3rd ed.

(Prentice Hall series in artificial intelligence).

Upper Saddle River: Prentice Hall, 2010, pp.

xviii, 1132 p.

https://alexcostaluiz.com/visualizations/
https://alexcostaluiz.com/visualizations/
http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
https://raphsilva.github.io/utilities/minimax_simulator/
https://raphsilva.github.io/utilities/minimax_simulator/

