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ABSTRACT 

Classical artificial intelligence (AI) algorithms like Minimax and Alpha-Beta pruning for 

adversarial search problems and Backtracking (BT), Forward checking (FC), and Maintaining Arc 

Consistency (MAC) for constraint satisfaction problems are integral to any introductory artificial 

intelligence course. In spite of their ubiquity, the methods for teaching these algorithms often center 

around a block of abstract, and at times elusive, pseudocode which may contain a number of 

undefined functions or constructs. Consequently, these pseudocodes and accompanying 

explanations are a difficult framework from which to learn and understand these classical 

algorithms to any enduring degree. Frequently, visualizations are sought after to supplement 

learning of these algorithms by providing a more intuitive framework from which to construct a 

lasting understanding. While visualizations of many basic tree and graph searching algorithms 

exist, there are few which cover the specific aforementioned algorithms. In this work we present a 

selection of easily accessible and intuitive web-based interactive visualizations of the Minimax and 

CSP algorithms for use in an introductory-level academic environment. 

Index Terms: algorithm visualization, minimax, alpha-beta pruning, constraint satisfaction 

problems, CSP, backtracking, forward checking, arc consistency 

 

I. INTRODUCTION 

There are a number of algorithms central to any 

level of education in artificial intelligence and 

which are covered in virtually all introductory level 

artificial intelligence course. Among these classical 

algorithms are the adversarial search algorithms 

Minimax and Alpha-Beta pruning and the constraint 

satisfaction problem (CSP) solving techniques 

Backtracking (BT), Forward Checking (FC), and 

Maintaining Arc Consistency (MAC). Though they 

are not prohibitively complex, the learning of these 

algorithms often constitute a student’s first foray 

into the world of search algorithms and, for many 

new students, the task of developing an enduring 

understanding these algorithms is of considerable 

difficulty. In spite these algorithms’ ubiquity, the 

pedagogical techniques employed to teach these 

algorithms are frequently unintuitive, inaccessible, 

or inefficient.  

Most often, students are presented with a block of 

high-level pseudocode (which may lack a number 

of undefined functions or constructs) and an 

accompanying explanation covering one or two toy 

examples of the algorithm at work. Though the 

presentation of a formal definition is, of course, 

critical to the teaching of these algorithms, the 

pseudocode and toy examples alone are often not 

enough to furnish students with a lasting impression 

of these algorithms. The pseudocode presented is 

generally too abstract and elusive to commit to 

memory, and the toy examples explored are often 

too trivial and leave students with an incomplete and 

ungeneralizable understanding of these algorithms.  

Even though these teaching methods get the job 

done, and with time could provide a thorough 

enough understanding, they could easily be 

improved with the use of interactive computer 

visualizations. Visualization is a powerful 

technique for the learning of abstract information 

and constitutes the perfect learning tool for these 
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classical algorithms whose search spaces can all be 

visualized as a graph or tree structure. In providing 

visual constructions of these algorithms’ steps and 

search spaces, students are presented with a more 

concrete and intuitive framework around which to 

base their understanding. Visual representations are 

easier to commit to memory than pseudocode, and 

visualizations themselves deliver the same benefits 

as the exploration of toy examples and more since 

they may be extended beyond the purely trivial. 

Interactive visualizations facilitate even greater 

advantage as the student is equipped with the ability 

to define search spaces to their liking, explore all 

different kinds of examples, and investigate any 

particular misunderstandings. 

The rest of this paper is organized into a number of 

sections II-IV. Section II describes existing 

implementations of adversarial search and CSP 

algorithm visualizations as well as their strengths 

and shortcomings. Section III describes our 

implementations of adversarial search and CSP 

algorithm visualizations, as well as their strengths 

and shortcomings. Section IV provides a conclusion 

and a discussion of the ways in which the current 

work could be extended. 

II. RELATED WORKS 

Algorithm visualization tools can generally be split 

into two categories: web-based tools, which are 

accessible over the internet and render in an internet 

browser, and non-web-based tools which are 

downloaded and run on a client machine. In this 

section we limit our purview to live, web-based 

implementations due to the inaccessibility and 

unpopularity of non-web-based tools. Students are 

generally uninterested in the downloading of 

programs and accompanying software packages 

merely for the visualization of these algorithms. 

Though many visualization programs exist for 

classical graph searching techniques likes depth-

first search and breadth-first search, visualization 

programs for adversarial search algorithms and CSP 

solving techniques are few and far in between, or in 

the case of CSP solving techniques, completely 

nonexistent. 

In the case of adversarial search algorithms two 

popular implementations exist: one by José Manuel 

Torres (Torres) [1] and one by Leandro Ricardo 

Neumann, et al. (Neumann) [2]. Both of which 

implement the Minimax algorithm as well as Alpha-

Beta pruning. 

TORRES MINIMAX VISUALIZATION 

The Torres program presents the search space of the 

Minimax algorithm as tree under a control panel 

used to define the structure of the tree. The program 

uses a textual input for tree construction, meaning 

search spaces are defined by two strings of numbers: 

a list of numbers defining the number of children of 

each node and a list of numbers defining the utilities 

(or heuristic values) of each leaf node. Once a 

search space is constructed the user may step 

through the Alpha-Beta pruning algorithm one 

instruction at a time or opt to run the entire 

algorithm in an animated sequence. The Torres 

implementation only allows you to run the Alpha-

Beta pruning algorithm and not the simple Minimax 

algorithm alone. A screenshot of the Torres program 

is given in Figure 1. 

Visually, the program is of mediocre quality and the 

tree definition mechanism is poorly defined and 

hard to understand, often times leading to the 

construction of invalid trees or tree formations for 

which the user did not intend. An incomprehensible 

“message” is given which presumably defines the 

tree in a structured text format. When large trees are 

constructed, nodes often occlude one another, 

making the visualization hard to follow. MAX states 

are indicated by upwards pointing triangles and 

MIN states are indicated by downwards pointing 

triangles, following the generally accepted 

convention. 

During algorithm execution, current game states are 

highlighted in yellow and state utilities are 

presented to the left of each node. Alpha and beta 

values are also presented to the left of each game 

state, indicating the values of alpha and beta at the 

time of that state’s evaluation. There are cases when 

the alpha and beta values are not visually updated 

(though the algorithm still functions correctly), and 

the presentation of alpha and beta values at each 
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state is minorly misleading since alpha and beta are 

global to the entire algorithm and each state does not 

have its own associated alpha and beta value. If a 

state is pruned during execution, the edge 

connecting that state and its parent is marked with a 

red X. After the algorithm has finished executing, 

the optimal path for MAX is highlighted in blue. 

The user may not specify that MIN goes first.

 
Figure 1: Screenshot of the Torres visualization.

 

Overall, the Torres program gets the job done, but 

the textual input for tree construction is extremely 

unintuitive and difficult to use, there are a number 

of issues with the presentation of alpha and beta 

values as mentioned above, and the program lacks 

any explanatory or pedagogical material about the 

Minimax or Alpha-Beta pruning algorithms. 

 

 

NEUMANN MINIMAX VISUALIZATION 

The Neumann program presents the search space of 

the algorithm as a tree under a control panel for 

executing and stepping through the algorithm 

instructions. The program uses a graphical, click-

based input for tree construction, meaning the 

search space is constructed by clicking on nodes to 

add child nodes or edit utility values. Once a search 

space is constructed the user may choose to execute 
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either the simple Minimax algorithm or the Alpha-

Beta pruning algorithm after which they may step 

through each instruction of the algorithm or skip to 

the end result of the program. The program also 

allows users to step backwards through the 

algorithm. 

Visually, the program is of better quality than the 

Torres program but is still lacking in many areas. 

Large trees can be constructed without node 

occlusion, but wide trees will occlude the 

MAX/MIN labels presented at each layer of the tree. 

The tree definition mechanism is much more 

intuitive than that of the Torres program, but at the 

cost of efficiency. It takes quite a long time to 

construct large trees with many clicks and repeated 

tasks, though a default example can be generated. 

MAX and MIN states are both presented as circular 

nodes, going against accepted conventions, and 

instead indicated by labels to the left and right of 

each tree layer. A screenshot of the Neumann 

program is given in Figure 2.

 
Figure 2: Screenshot of the Neumann visualization.

During algorithm execution, current games states 

are highlighted by a red border and state utilities are 

presented in the center of each node. Alpha and beta 

values are not visually represented during execution 

of the Alpha-Beta pruning algorithm. If a state is 

pruned during execution, the edge connecting that 

state and its parent is marked with a red X, just as in 

the Torres program. After the algorithm has finished 

executing, the optimal path for MAX is not 

indicated and the user must follow the child states 

of the root with the same utility as the root. The user 

may not specify that MIN goes first. 

Overall, the Neumann program also gets the job 

done and works accurately, but the graphical tree 

definition input, while more intuitive, is extremely 

slow to use. The program also lacks visual 

indicators of important information like the values 

of alpha and beta during Alpha-Beta pruning and the 

optimal path for MAX after execution. The program 

lacks any explanatory or pedagogical material about 
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the Minimax or Alpha-Beta pruning algorithms, as 

well. In our work we shall seek to ameliorate many 

of the shortcomings of these two works as well as 

combine their strengths into one program. 

As previously mentioned, our investigation yielded 

no live, web-based CSP interactive visualizations, 

so our discussion of related works concludes here. 

III. OUR WORKS 

In this work we aimed to create two interactive, 

web-based visualization tools: one for Minimax and 

Alpha-Beta pruning and one for the Backtracking 

(BT), Forward Checking (FC), and Maintaining Arc 

Consistency (MAC) solving techniques for CSPs. 

TECHNOLOGIES USED 

Because of their high familiarity, accessibility, and 

ease-of-use, we opted to create a web-based 

program, meaning it is universally accessible to 

anyone with an internet browser and internet 

connection and renders directly in a user’s internet 

browser. Our program is implemented mostly in 

JavaScript using the React user interface library, 

with a small amount of additional HTML and CSS 

code and is hosted on the author’s personal website 

(https://alexcostaluiz.com/visualizations/).  

MINIMAX PROGRAM 

For the Minimax and Alpha-Beta pruning 

visualization program, hereby referred to as the 

Minimax program, we aimed to create a similar but 

enhanced version of the programs discussed in 

Section II, bridging their respective strengths while 

avoiding their shortcomings and also pursuing new 

ideas for enhancement. Important design choices to 

considered while constructing this program include 

the following: 

o How best to accept input for tree construction. 

o How best to visualize the search space (incl. 

node shapes, labels, edges, utility values). 

o How best to indicate the different instructions 

of the Minimax and Alpha-Beta pruning 

algorithms. 

o How best to provide helpful explanatory 

material which might aid a student in their 

understanding of these algorithms. 

INPUT FOR TREE CONSTRUCTION 

To the first consideration, we opted to follow suit of 

the Neumann program and use a graphical (or click-

based) input for tree construction. To avoid the 

efficiency shortcomings of the Neumann program, 

we implemented a number of changes which speed 

up construction times and limit unnecessarily 

repetitive tasks. First we split the tree construction 

and utility specification into two distinct phases of 

the visualization. By doing so, we can avoid any 

small, difficult-to-click dropdown menus on node 

clicks and instead directly perform the desired task 

based on the visualization phase. Furthermore, 

during tree construction, child-nodes-to-be follow 

the cursor as they are placed in such a manner that 

allows for speedy construction of successive nodes. 

a)
  

b)
  

Figure 3: a) An example of our Minimax program during the tree construction mode. In the top left corner are mutually exclusive buttons BUILD 

MODE and DATA MODE which allow users to toggle between tree construction and utility specification modes. The child node of N7 is currently 

https://alexcostaluiz.com/visualizations/
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being placed. Its slight transparency indicates that it does not yet exist, and its position follows the user’s cursor making it easy for users to place 

nodes wherever they desire, and the creation child nodes of the node being currently placed require no mouse movements after the current node is 

placed. b) An example of our Minimax program during the utility specification mode. The single input text box located at the top left accepts input 

for all leaf nodes and automatically updates to the next leaf node with a missing utility after a user enters a utility for the previously selected leaf 

node. 

Our last optimization in this category was a 

streamlined utility specification procedure which 

uses only one text box and automatically selects 

successive leaf nodes to be supplied a value. 

Effectively, the user need only to type 𝑛 numbers, 

where 𝑛  is the number of leaf nodes, with no 

clicking or use of the cursor. Overall, our tree 

construction procedure takes on a hybrid form of 

both the textual and graphical forms seen in Section 

II, maintaining the efficiency of the textual form 

while also supplying the user with an intuitive and 

fail-safe experience. Figure 3 presents examples of 

each of these optimizations. 

SEARCH SPACE VISUALIZATION 

To the second consideration, we opted for simple, 

convention-conforming visuals for the search space. 

Like the Torres and Neumann programs, we 

visualize the search space with a tree structure 

placed under a control panel. Like the Torres 

program, we identify game states with the 

conventional shapes: an upwards pointing triangle 

for MAX states and a downwards pointing triangle 

for MIN states. Leaf nodes are drawn as circles to 

avoid conflating them with the idea of a MAX or 

MIN state. Node labels are provided above each 

node to help distinguish each state from one 

another. Edges are simple grey lines which may take 

on other colors during algorithm execution. Lastly, 

node utilities are rendered in the center of each 

node. Figure 4 presents an example of a fully 

constructed tree. 

COLOR CODING FOR ALGORITHM STEPS 

To the third consideration, we follow suit of the 

Torres and Neumann programs by highlighting 

nodes when they are relevant to the current 

instruction of the algorithm. Unlike the existing 

programs, however, we extend this highlighting 

method with a color-coded scheme wherein 

different colors indicate different types of 

instructions of the algorithm.  

 
Figure 4: An example of fully defined tree in our Minimax program. 

Notice the clear shape distinction between MAX, MIN, and leaf nodes. 

For example, a currently selected game state’s node 

is highlighted in yellow, but a node whose utility is 

being updated is highlighted in blue. The full color 

code is as follows: 

𝑌𝑒𝑙𝑙𝑜𝑤 ⇒ 𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑔𝑎𝑚𝑒 𝑠𝑡𝑎𝑡𝑒 

𝐵𝑙𝑢𝑒 ⇒ 𝑎 𝑠𝑡𝑎𝑡𝑒 𝑤ℎ𝑜𝑠𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 

𝑃𝑖𝑛𝑘 ⇒ 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒 𝑤ℎ𝑜𝑠𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 

𝑃𝑢𝑟𝑝𝑙𝑒 ⇒ 𝑡𝑤𝑜 𝑛𝑜𝑑𝑒𝑠 𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑏𝑦 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 

Not only does this color code scheme offer more 

information about the state of the algorithm to the 

user than the existing programs, but after repeated 

use of the program, users may become familiar with 

the meaning of each color, allowing for quick and 

intuitive understanding of any state of the 

visualization. Edges also support a degree of color 

coding as pruned edges are colored red, the edge 

connecting two nodes that are being compared is 

colored purple, and the final optimal path for the 

root node is colored green. For Alpha-Beta pruning, 

a single display of the current alpha and beta values 

in the top left corner of the visualization window is 

provided. This display is color coded as well, 

appearing blue when either alpha or beta are being 

updated to a new value and purple when alpha and 

beta are being compared to one another. The use of 

a single display for alpha and beta helps to solidify 

the understanding that alpha and beta are global to  
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a)
  

b)
  

c)
  

d)
  

e)
  

f)
  

Figure 5: a) An example of a currently selected node. Here N2 is highlighted yellow, as the game state at N2 is currently being considered. b) An 

example of a leaf node being evaluated. Here N10 is highlighted pink. c) An example of two nodes being compared. Here nodes N2 and N5 and 

the edge connecting them is highlighted purple to indicate that they are being compared by MIN. d) An example of a node’s utility being updated. 

Here the utility of state N2 is updated to 7 since the minimum of N2’s successor states is 7. e) An example of a pruned edge. Here the edge 

connecting nodes N3 and N7 is highlighted red to indicate that there was no use for MIN to explore the children of state N3 any further. f) An 

example of an optimal path for MAX. Here the edges connecting nodes N1 to N11 are highlighted green.

the entire algorithm and not a property of each game 

state. Figure 5 presents examples of color-coded 

elements during algorithm execution. 

 

PEDAGOGICAL TOOLTIP SYSTEM 

To the fourth consideration, we implemented a 

tooltip system wherein explanations of each 

algorithm instruction as well as the motivation 

behind the more obscure ones are given at the 
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bottom of the visualization window during 

algorithm execution. So as the user steps through 

each algorithm, they are presented with a 

description of what is actually occurring behind the 

scenes, and in cases where the meaning of an 

operation is harder to grasp, an explanation of the 

purpose and consequences of the operation may also 

be included. Figure 6 presents examples of our 

tooltip system. 

 
Figure 6: An example of a tooltip for an alpha-beta compare operation. As the alpha-beta compare operation may be one of the hardest aspects of 

the Alpha-Beta pruning algorithm to grasp, our tooltip here includes detailed information about the motivation and consequences behind the alpha-

beta compare instruction, as it relates to the current algorithm state.

Beyond the aforementioned considerations, our 

Minimax program boasts a few other improvements 

over existing implementations. Firstly, either MAX 

or MIN may be specified as the player who moves 

first. This simple improvement makes the program 

more generalizable and can help users understand 

the different consequences that arise due to the order 

of play. Secondly, we provide a legend below the 

visualization window detailing the semantic 

meaning of different shape and coloring schemes 

which help to make the program more user-friendly 

and intuitive, in general. Finally, our program 

presents a cleaner user-interface than the existing 

implementations which avoids the occlusion of 

important elements even with large trees and gives 

clear instructions to the user before they begin using 

the program. Figure 7 presents the entire interface 

for the Minimax program. 

SHORTCOMINGS 

While we believe our Minimax program to 

constitute a significant improvement over the 

existing implementations in terms of usability, 

intuitiveness, generalizability, and effectiveness at 

education users about the Minimax algorithm, a 

number of shortcomings still exist.
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Figure 7: The entire user interface for the Minimax program.
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Firstly, the visualization window is rather small 

relative to the size of each node, meaning you 

cannot fit large trees within the visualization 

window without being forced to place nodes atop 

one another. While considerable research and effort 

were put into the pursuit of a zoomable interface, no 

solutions were of satisfactory performance, yet. For 

now, to get around this issue and construct larger 

trees, the entire window may be zoomed out (Ctrl+- 

or Cmd+- (Mac)). In doing so, the visualization 

window will stay the same size, but the size of nodes 

will get considerably smaller, allowing more to fit 

within the visualization window. 

Secondly, the program is missing the 

Expectiminimax algorithm, which is a fundamental 

enough algorithm for adversarial search that we 

believe it to be a considerable drawback that our 

program does not implement it. 

Lastly, tree construction could be made more 

efficient by the ability to delete single nodes instead 

of only the option to delete all nodes. The 

complexity of implementing such a feature, 

however, quickly outweighed the benefit of the 

feature itself, though with more time it would 

certainly be worth implementing. 

CSP PROGRAM 

Unfortunately, due to time constraints, an 

implementation of the CSP program we wished to 

create could not be completed. Though we cannot 

offer a live, web-based program for the CSP 

algorithms discussed in this work, the planning and 

design stages were completed. In this section we 

present all of our planning and design work 

completed for the CSP program, regrettably without 

helpful visual aids. 

For the CSP visualization program we aimed to 

create a first-of-its-kind, interactive visualization 

program which visualizes a few of the fundamental 

CSP solving techniques including Backtracking 

(BT), Forward Checking (FC), and Maintaining Arc 

Consistency (MAC). Many of the more complex 

CSP solving techniques build off of these 

fundamental methods by adding heuristic measures 

to different parts of the algorithm, so we believe it 

sufficient to constrain our CSP program to 

visualizing only these three algorithms. 

As previously stated, no live, web-based CSP 

visualization programs were discovered by our 

investigation. Based on the CSP programs that were 

discovered in our investigation, it seems that 

programs implementing CSPs primarily opt to focus 

on being useful for industrial purposes instead of 

academic purposes. This may help explain the lack 

of live, web-based CSP visualization tools since 

industrial uses of CSP tools are less likely to warrant 

a visualization component than academic uses and 

are more likely to desire implementations in much 

faster programming languages than JavaScript. As 

no implementations exist from which to begin our 

planning and design, we present a novel approach to 

interactive CSP visualization designed from 

scratch. 

Some important design choices to consider before 

implementing the CSP program are as follows: 

o How best to visualize the CSP itself. 

o How best to accept input for CSP construction. 

o How best to visualize the search space of each 

algorithm. 

o How best to indicate the different instructions 

of the BT, FC, and MAC algorithms. 

o How best to provide helpful explanatory 

material which might aid a student in their 

understanding of these algorithms. 

CSP VISUALIZATION 

To the first consideration, we opt to visualize the 

CSP itself as a constraint graph. Constraint graphs 

are graphs in which each node corresponds to a 

variable of the CSP problem, and an edge connects 

any two variables that participate in a constraint 

with one another [3]. Constraint graphs are a very 

useful and intuitive visualization for a CSP problem 

as they capture all variable and constraint 

information into one unified structure and leave 

only the domains of variables to be represented 

elsewhere. Much like in the Minimax program, we 

will present the constraint graph in a window below 

a control panel consisting of various buttons for 

manipulating the visualization state. 
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INPUT FOR CSP CONSTRUCTION 

To the second consideration, we will borrow from 

the Minimax program the graphical, point-and-click 

input for tree construction and extend it to be 

capable of creating graphs. The only change 

necessary will be to allow newly constructed edges 

to connect to already existing nodes instead of only 

to new child nodes. At this point, we will have a 

method for defining all the variables that exist in the 

CSP as well as the number of constraints and which 

variables participate in each constraint. Left to 

define are the domains of each variable and the 

relations which define each constraint. For defining 

the domains of each variable, we will again borrow 

from the Minimax program the utility specification 

procedure and extend it to accept a list of numbers 

instead of only a single utility value. This way, a 

finite domain of numbers can be specified for each 

variable in the CSP. As domains are specified, a 

node table below the visualization window will be 

populated with the domain of each node since they 

are not easily representable inside the node 

themselves. Finally, only the definition of constraint 

relations remains.  

Defining constraint relations, however, constitutes 

the most difficult definition for which to define an 

input procedure. Constraint relations may be 

defined by an explicit list of all variable assignments 

which satisfy the constraint or an abstract logic 

and/or arithmetic relation (e.g., 𝑋 +  5 <  𝑌, (𝑋 >

 10) ∧ (𝑋 ∗  2 <  𝑌), etc.). To support both these 

conventions we will extend the Minimax program 

utility specification procedure to automatically 

select edges missing relation data and to accept 

input as either a list of lists of numbers representing 

the list of variable assignment which satisfy the 

given constraint (so in this case, variable 

assignments are represented as lists of numbers) or 

a JavaScript code expression which uses the 

variable names of the given constraint and 

JavaScript logical and/or arithmetic operators to 

define the constraint relation. Only JavaScript 

expressions which strictly evaluate to a boolean will 

be accepted. By using JavaScript expressions, we 

avoid the burden of defining our own logical and 

arithmetic parser and can simply execute the 

inputted JavaScript expression using JavaScript 

itself. As constraint relation definitions are 

specified, an edge table below the visualization 

window will be populated with the variables and 

relation of each edge. 

SEARCH SPACE VISUALIZATION 

To the third consideration, we opt to visualize the 

search space as a tree since all three algorithms 

considered in this work explore it as such. During 

algorithm execution, the constraint graph 

representing the CSP in the visualization window is 

swapped out for the tree of the search space. Instead 

of completely obscuring the constraint graph from 

view, however, we opt to place it in a small, scaled 

down window within the top right corner of the 

main visualization window. Clicking this scaled 

down inset window allows the constraint graph to 

be shown in full view again. 

COLOR CODING FOR ALGORITHM STEPS 

To the fourth consideration, we follow suit of our 

Minimax program and use a color-coded system for 

different algorithm instructions. For all three 

algorithms explored in this work, the procedure 

followed by each algorithm can be decomposed into 

three main parts: variable selection, inference, and 

the recursive call. For variable selection, all 

unassigned variables will be highlighted purple in 

the domain table and compared using whichever 

variable selection procedure has been selected. 

Once a variable is chosen according to the selected 

procedure it will be highlighted blue and the search 

space tree will be expanded by one layer with all the 

potential assignments for the selected variable. All 

potential assignments are then iterated over and 

inference and a recursive call to the algorithm are 

performed on each potential assignment. When a 

potential assignment is the current assignment being 

considered in the iteration, it is highlighted yellow. 

During inference it is highlighted pink. If a value 

choice leads to failure, then it is highlighted red and 

a subsequent assignment is selected, or if the end of 

the iteration has been reached, backtracking occurs. 

If a recursive call is made, the whole procedure is 

started over again. 
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PEDAGOGICAL TOOLTIP SYSTEM 

To the fifth consideration, we follow suit of our 

Minimax program and provide a tooltip system 

which explains each step of the chosen algorithm as 

the user steps through them. We shall display 

tooltips in the same manner as they are displayed in 

the Minimax program, at the bottom of the 

visualization window. For instructions which are 

harder to understand the motivation for or 

consequences of, we will provide additional 

explanatory information which hopefully 

effectively communicates the motivation and/or 

consequences. 

Beyond our solutions to the above aforementioned 

considerations, we shall provide a legend, below all 

other elements, of the color code used, in the same 

manner that a legend is presented in the Minimax 

program. Additionally, instructions will be provided 

at the top of the CSP visualization page detailing the 

input mechanisms for constraint graph construction, 

domain specification, and constraint relation 

specification. 

IV. CONCLUSION 

In this work we have discussed the shortcomings of 

current techniques for teaching classical AI 

algorithms and the potential for powerful interactive 

visualizations to ameliorate many of these 

shortcomings. We have covered the strengths and 

shortcomings of related software programs which 

implement the Minimax and Alpha-Beta pruning 

algorithms. And lastly we have covered the 

programs of this work, along with the 

considerations assessed and decisions made during 

the planning and design processes of our program 

creation and the resulting strengths and 

shortcomings of the finished products. 

As is rather obvious, there are a number of ways in 

which the work herein may be continued or 

extended. Firstly, completion of the CSP program 

detailed in Section III, which regrettably could not 

be reached due to time constraints, could be 

pursued. Secondly, there are a number of algorithm 

variations or optimizations which could be added to 

our visualization programs as a toggleable feature 

much like the Alpha-Beta pruning in the Minimax 

program which would serve to make the programs 

even more generalized and allow users to explore or 

become familiar with even more algorithms. For the 

Minimax program, support for the Expectiminimax 

algorithm which allows for the existence of chance 

nodes in the search space, could be added to the 

program. For the CSP program, support for many 

toggleable heuristics including Minimum 

Remaining Values (MRV), the degree heuristic, the 

least-constraining-value heuristic, conflict-directed 

backjumping, and the min-conflicts heuristic could 

be added to the program. 

In spite of our failure to create a CSP program, we 

believe our Minimax program to constitute a 

significant improvement over those previously 

existing implementations and to be appropriate for 

use in an introductory academic environment. 

The Minimax program may be visited on the 

author’s personal website: https://alexcostaluiz.com

/visualizations/. 
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