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ABSTRACT 

Sign language is an important form of communication for people with impaired hearing and/or 

speaking abilities. American Sign Language (ASL) is used by approximately 500,000 people in the 

United States and is also used in Canada, Mexico, and many other countries. Among thousands of 

other signs, ASL consists of unique poses or gestures for each letter of the English alphabet. Image 

classification of these 26 signs constitutes a challenging task due to the complexity of ASL alphabet 

signs, high interclass similarities, large intraclass variations, and frequent self-occlusion of the 

hand. This work presents a method for ASL alphabet recognition using Convolutional Neural 

Networks (CNN). Specifically, we investigate 18 variations of a basic CNN architecture to discover 

which performs the task of ASL alphabet recognition with highest accuracy. To train our models, 

the ASL Alphabet dataset by Akash Nagaraj, consisting of 87,000 ASL alphabet sign images, was 

used. The ASL Alphabet Test dataset by Dan Rasband, consisting of 870 alphabet sign images, was 

used for model evaluation, as well. Of the 18 investigated models, the two top performing networks 

were the 5 Convolutional Layer, 3 Pooling Layer network trained for 10 epochs (5Conv) and the 5 

Convolutional Layer, 3 Pooling Layer networks with L2 Regularization trained for 15 epochs 

(5Conv-L2-15Epoch), which achieved test accuracies of 0.4977 and 0.4897, respectively. Overall, 

the 5Conv networks dominated networks using other combinations of convolutional or pooling 

layers. For its defense against overfitting, we believe the 5Conv-L2-15Epoch to be of optimal 

ability. 

Index Terms: ASL, sign language recognition, image classification, neural networks, CNN 

 

I. INTRODUCTION 

IA. BACKGROUND INFORMATION 

American Sign Language is a critically important 

mode of communication for individuals with 

impaired hearing or speaking abilities as it allows 

for communication through visual cues alone. It is 

widely used throughout the United States as well as 

Canada, Mexico, and many other countries [1]. 

Despite its prevalence, communication between 

ASL users and non-sign-language speakers is still a 

considerably difficult problem. While professional 

interpreters exist, they are often not readily 

available and costly. An automatic ASL recognition 

system could constitute a remarkable and especially 

valuable advancement in the image recognition field 

and the sign language world at large. Not only could 

such a system ameliorate the difficulties of 

communication between ASL and non-ASL 

speakers but could facilitate numerous 

advancements in the intersection between ASL and 

human-computer interaction. 

For decades, researchers have tried to solve the 

challenging problem of sign language recognition. 

Many proposed solutions rely on external devices, 

such as depth cameras, sensors, gloves, or motion 

capturing systems [1, 2]. Such constraints limit the 

applicability of these solutions to environments 

where these tools are available. Recently, given the 

demonstrated success of deep learning methods on 

computer vision tasks, focus has shifted to purely 

vision-based sign recognition powered by deep 

learning techniques. Being non-intrusive and 

requiring only a basic phone camera or webcam to 
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generate input, these methods have the potential to 

be significantly more applicable and wide-reaching 

than solution requiring external devices. Deep 

learning-based solutions, however, suffer from a 

lack of large-scale, public sign language databases 

suitable for machine learning, as well as a weakened 

ability to differentiate between interclass 

similarities and increased susceptibility to self-

occlusions of the fingers or hands. 

In this work, we address the need for a robust sign 

language recognition system by focusing on the 

simpler, though still challenging, task of ASL 

alphabet image recognition using convolutional 

neural networks. 

IB. CONVOLUTIONAL NEURAL NETWORKS 

Overview of Neural Networks 

Neural networks (NNs) have long been applied to 

image classification problems and have been shown 

to perform quite well at the task compared to other 

classification algorithms such as logistic regression, 

support vector machines, random forests, and k-

nearest neighbors. Inspired by biologic neural 

networks, NNs consist of multiple layers of fully 

connected neurons each of which can be though of 

as a single processing unit. Each neuron has 

trainable weights and biases, the values of which 

can be learned to provide desirable predictions or 

classifications. The structure of a NN is broken 

down into the input layer, a set of hidden layers 

(with trainable weights and biases), and the output 

layer which constitutes the prediction or 

classification of input by the model. Figure 1 

demonstrates the general structure of a NN. 

 
Figure 1. The structure of a basic neural network. The input layer, 

hidden layers, and output layer can take any desired shape. 

Overview of Convolutional Neural Networks 

Convolutional neural networks work in a similar 

fashion to the neural networks described above but 

incorporate several additions to the layer 

architecture. At the basic level, the layer structure of 

a CNN includes Convolutional Layers, Pooling 

Layers, and Fully Connected Layers. Fully 

Connected layers work in the same fashion as layers 

in a NN, with each node of a layer connected to all 

nodes of the previous layer. Convolution and 

pooling constitute the major building blocks of a 

CNN. They are responsible for extracting features 

from the input image which can then be used by 

Fully Connected layers to perform logical 

classification of the input image. Figure 2 presents 

the general structure of a CNN. 

 
Figure 2. The structure of a basic convolutional neural network. The 

convolutional and pooling layers perform feature extraction on the input 

image followed by classification by the fully connected layers. 

Convolutional Layers 

The convolutional layers are the foundation of a 

CNN. A convolution is a linear operation involving 

the multiplication of a set of weights with a set of 

input values, much like a traditional NN. In the 

convolution process, each neuron takes input from 

a rectangular n×n region of the previous layer called 

the local receptive field and computes a scalar 

product of the local receptive field with an array of 

weights called a filter. This same filter is applied 

over all n×n regions of the input layer resulting in a 

2D array of output values which represent a filtering 

of the input. This output is often called a feature 

map. 

 
Figure 3. The convolution process [3]. 
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The filter weights are learned by the network to 

extract specific features from the input layer. These 

extracted features can range from simple lines to 

basic shapes to complex structures like a human 

hand. The systematic application of the same filter 

across all sections of an input allows the filter the 

opportunity to discover that feature anywhere in the 

image, a capability known as translation invariance. 

Convolutional layers are also not limited to learning 

only one filter. Often, a convolutional layer learns 

anywhere from 32 to 512 filters in parallel for a 

given input. This gives that particular layer 32 to 

512 different ways of extracting features from an 

input which allows for specialization (e.g., the layer 

may detect not only basic lines, but lines specific to 

the training data used).  

Furthermore, convolutional layers can be applied 

not only to the input data, but also to the output of 

other layers. The stacking of convolutional layers 

allows for a hierarchical decomposition of the input. 

The filters which operate directly on the input image 

can extract low-level features such as lines, then 

filters which operate on the output of these low-

level layers can extract features which combine 

many low-level features like curves and shapes, all 

the way up to complex structures like faces, animals, 

hands, etc. 

Pooling Layers 

A problem with output feature maps from 

convolutional layers is that they are sensitive to the 

location of features in the input. In other words, 

small variations in the position of a feature in the 

input image will result in different feature maps. To 

address this issue, CNNs often use Pooling Layers 

to down sample the feature maps, making them 

more robust to changes in the position of features in 

the input image. 

The Pooling Layer takes small rectangular blocks 

(often 2×2) from the Convolutional Layer output 

and down samples it. There are two common 

pooling operations, average pooling and maximum 

pooling, which calculate the average value or 

maximum value for each block of the feature map, 

respectively. In this work we universally use 

maximum pooling for all our pooling layers. 

 
Figure 4. The pooling process [3]. 

The result of using a pooling layer is a summarized 

version of the features detected by the previous 

convolutional layer. They afford a capacity called 

local translation invariance to the network by 

helping to make feature map representations 

invariant to small translations in the input image. 

Regularization Techniques 

Because of their complexity and high number of 

parameters, convolutional neural networks are 

prone to overfitting their training data. Two 

common regularization techniques to prevent 

overfitting include Dropout and L2 regularization. 

We use both in many of the models investigated in 

this work. Dropout is a simple and effective 

procedure in which a certain proportion of randomly 

selected neurons do not participate in feedforward 

or backpropagation during training. This process 

simplifies the network and guards against 

overfitting. L2 regularization works by updating the 

cost function with a regularization term. This term 

encourages weights to decay towards 0 which yields 

simpler models resistant to overfitting their training 

data. 

IC. RESEARCH OBJECTIVES 

Aim 1 – Construct a CNN which can accurately 

classify ASL alphabet signs in real-world 

environments. 

Our primary research objective is summarized in 

Aim 1 above. To achieve this objective, we construct 

and train 18 CNN model variations on our training 

and validation datasets. Each model will perform a 

multiclass classification of input ASL alphabet sign 

images as one of 29 classes, including the 26 
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English alphabet letters and 3 auxiliary classes, 

SPACE, DELETE, and NOTHING (which may be 

helpful for real-time classification applications). 

After training and validation of the models, each 

model is subject to a comparison of top-1 accuracies 

on an unseen training dataset as an evaluation of 

model performance. 

The datasets used to train and test our models are 

the ASL Alphabet dataset by Akash Nagaraj and the 

ASL Alphabet Test dataset by Dan Rasband, 

respectively. These datasets consist of labeled 

200×200-pixel 3-channel RGB ASL alphabet sign 

images which comprise 29 classes (26 for the letters 

A-Z and the three aforementioned auxiliary classes). 

Our training data consists of 87,000 images with 

3,000 images per class, and our testing data consists 

of 870 images with 30 images per class. Both 

datasets are perfectly balanced, eliminating the need 

for any dataset balancing. Before training, images 

are subject to a resizing to 64×64 pixels and a pixel 

rescaling factor of 1/255 to transform pixel values 

to the range [0, 1]. 

After the preprocessing of our image sets, we 

perform 18 identical experiments for each of the 18 

CNN models investigated in this research. First the 

training data is split into 90% training data and 10% 

validation data, then each model is trained using 

training and validation data, and finally each model 

is evaluating against the testing dataset yielding the 

top-1 accuracy scoring metric for each model. 

Our results indicate that a 5 Convolution Layer, 3 

Pooling Layer (5Conv) model is best suited to the 

task of classifying ASL alphabet sign images. The 

top two performing models were the 5Conv model 

and the 5Conv model with L2 regularization 

(5Conv-L2-15Epoch) which achieved test 

accuracies of 0.4977 and 0.4897, respectively. Other 

notable mentions include the 5Conv-15Epoch 

model with a test accuracy of 0.4747, the 4Conv 

model with a test accuracy of 0.4690, and the 6Conv 

model with a test accuracy of 0.4517. All other 

models achieved a test accuracy under 0.4500. 

The remainder of this paper is broken into a number 

of sections. Section II describes our training and test 

datasets and discloses our data preprocessing 

techniques in further detail. Section III describes our 

experiments in further detail and provides our 

experimental results in tabular form. Section IV 

presents an analysis of our experimental results, and 

finally section V provides a conclusion and 

discussion of the paper at large. 

II. DATA 

IIA.  INTRODUCTION 

The datasets used in this work were based on the 

American Manual Alphabet (AMA). Figure 5 shows 

all hand positions of the alphabet. 

 
Figure 5. Hand poses used for constructing each letter in the American 

Manual Alphabet. 

The datasets used for training and testing our 

networks were comprised of static hand poses of 

each letter from the alphabet, as well as hand poses 

for a SPACE, DELETE and NOTHING class which 

could prove to be helpful in real-time classification 

applications. Gesture-based signs, J and Z, were 

included in the training and testing datasets for 

completeness despite their temporal dimension. 

Static poses of these gesture-based signs taken at 

different times along the gesture sequence were 

used in both training and testing. 

The training data, the ASL Alphabet dataset by 

Akash Nagaraj, consists of 87,000 200×200-pixel 3-

channel RGB ASL alphabet sign images which 
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comprise 29 classes (26 for the letters A-Z and the 

three aforementioned auxiliary classes). Each of the 

29 classes contains 3,000 instances making a 

perfectly balanced dataset. 

The training data uses varied lighting schemes and 

relative positioning for poses of each class. This 

variation is crucial for the application of the trained 

models to real world data which may exhibit any 

number of lighting, positioning, or background 

settings. Such variation enables the network to 

discern truly distinguishing features between 

classes instead of overfitting the particular interclass 

variation of the training data. Though the training 

data does provide variation in the form of lighting 

schemes and relative positioning, it still suffers 

greatly from excessive homogeneity. All images 

were taken by the same signer against a relatively 

static background. In ASL signing, there often 

exists subtle variation in positioning between 

different signers, not to mention regional and 

cultural differences which manifest as positioning 

variation between signers. With signer dependency 

being one of the most blocking challenges of current 

non-intrusive sign recognition approaches, the lack 

of multiple signer representation in the training data 

constitutes an enormous drawback to the 

generalizability of our trained models. Furthermore, 

the lack of background variation in our training data 

constitutes yet another drawback to generalizability. 

Backgrounds deviating strongly from those seen in 

Figure 6 are likely to yield unexpected behavior 

from our trained models. 

 
Figure 6. Example training images from the ASL Alphabet dataset by 

Akash Nagaraj with the true class label located above each image. Of 

note is the varied lighting and positioning of each pose, but lack of 

signer and background variation. 

The testing data, the ASL Alphabet Test dataset by 

Dan Rasband, consists of 870 200×200-pixel 3-

channel RGB ASL alphabet sign images which 

comprise the same 29 classes as the training data. 

Each of the 29 classes contains 30 instances making 

a perfectly balanced dataset. The testing data also 

makes the effort to use varied lighting schemes, 

relative positioning, and backgrounds but still 

suffers from the same homogeneity issues which 

affect the training data. Figure 7 displays example 

testing images from the ASL Alphabet Test dataset. 

 
Figure 7. Example testing images from the ASL Alphabet Test dataset 

by Dan Rasband with the true class label located above each image. Of 

note is the varied lighting and positioning of each pose, but lack of 

signer and background variation. 

Both testing and training data were shared on 

Kaggle.com for the express purpose of ASL 

alphabet image classification. 

IIB. PREPROCESSING 

The training and testing datasets were quite clean 

and required little preprocessing. Simple resizing 

and rescaling preprocessing steps were applied to 

the training and testing images. The 200×200-pixel 

images were resized to 64×64 pixels to decrease the 

number of parameters in each network which in turn 

sped up training time. Pixel values fall in the range 

of 0 to 255 which is not ideal for input values to a 

neural network, so all pixel values are rescaled by a 

factor of 1/255 giving a new pixel value range of 0 

to 1. 



ALEXANDER COSTA 

6 

 

IIC. PARTITIONING 

The training data was randomly partitioned into 

90% training and 10% validation sets to support 

parameter tuning. Evaluation of models was 

performed by testing models with the 

aforementioned ASL Alphabet Test dataset 

consisting of signs performed by a different signer 

in foreign environments. The motivation behind 

evaluating models with such disparate data is to 

emphasize the goal of generalizability. It is a rather 

trivial and ineffectual problem to classify signs 

performed by a single signer in a static environment. 

To classify signs performed by many signers in 

varied environments, however, is a much more 

valuable endeavor, so the dissimilar testing data is 

used to encourage our models to search for 

generalizable solutions. 

III.  EXPERIMENTS 

For our experiments, we used the Python 

programming language, TensorFlow machine 

learning toolkit and Keras neural network library for 

data preprocessing, model training and evaluation. 

Experiments were performed on a cloud computing 

engine with Tesla P100 16GB VRAM as GPU, 

13GB RAM and 2-core Intel Xeon as CPU. 

Following data preprocessing we constructed 18 

different CNN models using a combination of 

different convolutional layers, pooling layers, 

image preprocessing, regularization techniques, and 

number of training epochs. Model construction 

proceeded in a systematic fashion in which 3-5 

models were constructed and tested. Then, the most 

promising model was further modified into another 

3-5 models. The process was repeated until test 

accuracies did not improve. The 18 CNN models are 

summarized in Table 1. 

A number of parameters were kept constant 

throughout the experimental process. These 

parameters include Convolutional Layer filter 

dimensions of 4×4 and stride dimensions of 1×1.  

Pooling Layers always used the maximum pooling 

operation with a 2×2 pooling window. 

Convolutional Layers and Fully Connected Layers 

always utilize the rectified linear activation function 

(ReLU), all L2 regularizations use a lambda of 

0.0001, and all models use the Adam optimization 

algorithm and a sparse categorical cross-entropy 

loss function. Unless otherwise noted, all models 

were trained in 10 epochs.

 

Table 1: 18 CNN Model Variations 

Description Params 

Base 

A base model consisting of only Fully Connected Layers. 

Input → Flatten → Fully Connected(32) → Output 

394,205 

1Conv 

A model consisting of a single Convolutional Layer and a single Pooling Layer. 

Input → Convolutional(16) → Pooling → Flatten → Fully Connected(32) → Output 

462,573 

2Conv 

A model consisting of two Convolutional Layer and two Pooling Layers. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Flatten → Fully Connected(64) 

→ Output 

357,069 

3Conv 

A model consisting of three Convolutional Layer and three Pooling Layers. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Convolutional(64) → Pooling → 

Flatten → Fully Connected(128) → Output 

250,509 

3Conv-NoPool 

A model consisting of three Convolutional Layer and no Pooling Layers. 

Input → Convolutional(16) → Convolutional(32) → Convolutional(64) → Flatten → Fully Connected(128) 

→ Output 

24,826,509 

3Conv-Dropout 250,509 
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A model consisting of three Convolutional Layer, three Pooling Layers, and a Dropout Layer. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Convolutional(64) → Pooling → 

Dropout(0.2) → Flatten → Fully Connected(128) → Output 

4Conv 

A model consisting of four Convolutional Layer and four Pooling Layers. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Convolutional(64) → Pooling → 

Convolutional(128) → Pooling → Flatten → Fully Connected(256) → Output 

213,517 

5Conv 

A model consisting of five Convolutional Layer and three Pooling Layers. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,621 

6Conv 

A model consisting of six Convolutional Layer and three Pooling Layers. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Convolutional(512) → Pooling → Flatten → Fully 

Connected(1024) → Output 

3,350,285 

5Conv-Grayscale 

A model consisting of five Convolutional Layer and three Pooling Layers with grayscale input images. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,109 

5Conv-MoreFilters-Grayscale 

A model consisting of five Convolutional Layer and three Pooling Layers with grayscale input images and 

doubled output filters for each Convolutional layer. 

Input → Convolutional(32) → Pooling → Convolutional(64) → Convolutional(128) → Pooling → 

Convolutional(256) → Convolutional(512) → Pooling → Flatten → Fully Connected(1024) → Output 

7,536,125 

5Conv-Dropout 

A model consisting of five Convolutional Layer, three Pooling Layers, and three Dropout Layers. 

Input → Convolutional(16) → Pooling → Dropout(0.5) → Convolutional(32) → Convolutional(64) → 

Pooling → Dropout(0.5) → Convolutional(128) → Convolutional(256) → Pooling → Dropout → Flatten → 

Fully Connected(512) → Output 

1,892,621 

5Conv-L2 

A model consisting of five Convolutional Layer and three Pooling Layers with L2 regularization on each 

convolutional layer. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,621 

5Conv-Dropout-L2 

A model consisting of five Convolutional Layer, three Pooling Layers, and three Dropout Layers with L2 

regularization on each convolutional layer. 

Input → Convolutional(16) → Pooling → Dropout(0.5) → Convolutional(32) → Convolutional(64) → 

Pooling → Dropout(0.5) → Convolutional(128) → Convolutional(256) → Pooling → Dropout → Flatten → 

Fully Connected(512) → Output 

1,892,621 

5Conv-L2-5Epoch 

A model consisting of five Convolutional Layer and three Pooling Layers with L2 regularization on each 

convolutional layer and 5 epochs of training. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,621 

5Conv-L2-15Epoch 

A model consisting of five Convolutional Layer and three Pooling Layers with L2 regularization on each 

convolutional layer and 15 epochs of training. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,621 

5Conv-5Epoch 

A model consisting of five Convolutional Layer and three Pooling Layers and 5 epochs of training. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,621 
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5Conv-15Epoch 

A model consisting of five Convolutional Layer and three Pooling Layers and 15 epochs of training. 

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling → 

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output 

1,892,621 

Table 1. The 18 CNN models with accompanying parameter counts. A number within parentheses following a layer name indicate the output 

dimension in the case of Convolutional Layers and Fully Connected Layers, and the proportion of inactive neurons for Dropout Layers. 

Following training, each model was tested against 

the ASL Alphabet Test dataset for an estimation of 

model performance. The results of this final test for 

each model are given in Table 2. No model took a 

prohibitive amount of time to complete training or 

testing.

Table 2: Experimental Results for the 18 CNN Models 

Name Training 

Accuracy 

Validation 

Accuracy 

Testing Accuracy Training 

Time (s) 

Testing 

Time (s) 

Base 0.0323 0.0331 0.0345 60 0 

1Conv 0.9864 0.9791 0.0701 75 0 

2Conv 0.9964 0.9959 0.1828 87 0 

3Conv 0.9952 0.9954 0.3621 97 0 

3Conv-NoPool 0.9946 0.9905 0.1575 261 0 

3Conv-Dropout 0.9919 0.9980 0.3989 98 0 

4Conv 0.9931 0.9926 0.4690 104 0 

5Conv 0.9926 0.9977 0.4977 156 0 

6Conv 0.9914 0.9956 0.4517 204 0 

5Conv-Grayscale 0.9931 0.9939 0.3299 170 0 

5Conv-MoreFilters-Grayscale 0.9916 0.9943 0.2586 300 0 

5Conv-Dropout 0.9595 0.9894 0.3793 161 0 

5Conv-L2 0.9935 0.9960 0.4195 161 0 

5Conv-Dropout-L2 0.0344 0.0343 0.0345 163 0 

5Conv-L2-5Epoch 0.9832 0.9893 0.4494 81 0 

5Conv-L2-15Epoch 0.9931 0.9852 0.4897 241 0 

5Conv-5Epoch 0.9882 0.9890 0.4414 76 0 

5Conv-15Epoch 0.9927 0.9983 0.4747 229 0 

Table 2. Experimental results for all 18 CNN models. The 2 models achieving the highest test accuracies are bolded.

The results indicate that a 5Conv model is best 

suited to the task of classifying ASL alphabet sign 

images. The top two performing models were the 

5Conv model and the 5Conv model with L2 

regularization (5Conv-L2-15Epoch) which 

achieved test accuracies of 0.4977 and 0.4897, 

respectively. 

Most models except the trivial 1Conv and those 

trained with only 5 epochs converged quickly to 

0.9900+ training and validation accuracies but 

many performed extremely poorly on the testing 

dataset. As the number of convolutional layers used 

increased, as did the performance on the testing 

dataset until the 6Conv model which invariably 

performed worse than the 5Conv model. Due to the 

diminishing number of available inputs as more and 

more layers are stacked and the limited input 

dimensions of 64×64, we could not investigate 

models with any more convolutional layers than 

6Conv. 

The elimination of Pooling Layers (3Conv-NoPool) 

invariably diminished testing accuracies and the use 

of Dropout Layers (3Conv-Dropout, 5Conv-

Dropout) slightly increased performance in the 

3Conv-Dropout case but largely decreased 

performance in the 5Conv-Dropout case. 

Proceeding with the 5Conv model, the use of 

grayscale input images were used to test whether 

color was contributing valuable sign-discerning 

information to the classifier or was being overfit by 
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the classifier and causing the relatively low testing 

accuracies. The use of grayscale inputs invariably 

diminished test accuracies and had no major effect 

on training and validation accuracies, meaning color 

did contribute valuable and generalizable sign-

discerning information to the network. 

Given the large disparity between validation and 

test accuracies, dropout and L2 regularization 

techniques were tested with the 5Conv model in an 

attempt to diminish any possible overfitting. Both 

dropout and L2 regularization techniques invariably 

decreased testing accuracy of the 5Conv model, 

though the 5Conv model with L2 regularization 

trained for an additional 5 epochs (for a total of 15) 

had comparable performance to the 5Conv model. 

The lack of improvement in testing accuracy when 

using regularization techniques indicates that the 

underlying causes for such low testing accuracies 

must be something other than overfitting during 

training.  

IV. ANALYSIS 

Despite extremely high training and validation 

accuracies greater than 0.9900 for most models, we 

were unable to achieve test accuracies greater than 

0.5000 for any model investigated. Here we present 

a number of hypotheses and potential remediations 

for this disappointingly low testing accuracy. 

First and foremost, our training/validation and 

testing datasets are markedly dissimilar from one 

another yet excessively homogenous within. As 

discussed in Section II, our training set consists of 

images from only one signer in a relatively static 

environment. This homogeneity does not seem to 

offer our models enough intraclass variability 

information in order for them to generalize well to 

other signers or environments, which is 

demonstrated by our low testing accuracies. Ideally, 

a training set consisting of signs by tens, if not 

hundreds, of different signers in hundreds of 

different lighting and background environments 

would be used to account for all kinds of real-world 

variability which our training set lacks. We 

hypothesize that a larger, more varied training 

dataset could offer many improvements to our 

models’ accuracies. 

On top of an excessively homogenous training 

dataset, the classification of ASL alphabet signs 

itself presents many obstacles due to high interclass 

similarities. Many letter signs are extremely similar, 

differing only by one finger’s position (G/H, K/V, 

U/V, E/S, M/N/S/T) or even simply the rotation of 

the hand (P/K, I/J, D/Z). Even a beginner ASL user 

might mistake one of these letters for the other. To 

see whether the CNN models were themselves 

susceptible to these interclass similarities, we 

investigate the confusion matrices of the top 2 

models presented in Figures 8 and 9 below. 

 
Figure 8. Confusion matrix for the 5Conv model. 

 
Figure 9. Confusion matrix for the 5Conv-L2-15Epoch model. 

Counts falling along the main diagonal are correctly 

classified test images. Colored squares outside the 
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main diagonal constitute significant and habitual 

mistakes in the model classification. Many 

significant misclassifications do in fact correspond 

with those class pairs having high interclass 

similarities. For example, 15 Vs were classified as 

Ks in both models. 5Conv classifies many Ss as Ms. 

5Conv-L2-15Epoch classifies many DELETEs as 

Qs, which share many similarities. Both models 

misclassified Gs as Hs and both models misclassify 

many Cs and Ds as Fs which all share a circle-like 

structure from certain angles.  

While a number of unexpected misclassifications 

exist as well, it is clear that the test accuracies of the 

best models suffer due to the high interclass 

similarities between many classes. To accurately 

discern between such similar classes our models 

demand higher density input images which may 

allow the model to differentiate similar classes more 

easily through the increase in available information. 

Higher density input images may also allow for the 

use of more convolutional layers which could 

strengthen our models’ classification abilities. 

Some form of image segmentation procedure prior 

to model training may also help the models 

differentiate similar classes by focusing the areas of 

interest (hand and fingers) and ignoring superfluous 

data like background patterns. 

V. CONCLUSION 

Our work indicates that among many different 

simple CNN architecture variations, the 5Conv 

model, consisting of 5 Convolutional Layers and 3 

Pooling Layers, performs best at ASL alphabet sign 

classification. The 5Conv model with additional L2 

regularization and trained for 15 epochs exhibits 

comparable performance, as well. Although high 

training and validation accuracies were easy to 

attain, our models failed to reach even 0.5000 

testing accuracy, with 5Conv achieving the highest 

testing accuracy of 0.4977. It seems our models are 

bottlenecked not by overfitting issues during 

training as much as by the lack of signer and 

background variation in our training dataset and by 

high interclass similarities in the ASL alphabet. 

Our findings present a number of opportunities for 

the experiments herein to be continued and 

extended. Firstly, the aggregation and preprocessing 

of many more ASL alphabet datasets in addition to 

those used in this work could be undertaken to 

provide the models with much more varied, real-

world information and subsequently strengthen 

their generalizability. 

While a number of CNN architecture variations 

were investigated, very little hyperparameter 

optimizations were performed. It may prove useful 

to investigate different input image dimensions, as 

well as different filter and stride dimensions, 

different L2 regularization lambdas, and different 

optimizers and loss functions. 

As previously mentioned, the addition of an image 

segmentation process may greatly improve the 

models’ classification abilities as well as increase 

the types and variety of images for which the 

models are able to work well (e.g., with image 

segmentation, classification of full body images 

may also work well since model attention could be 

focused only to hands and fingers within the image). 

Finally, a natural extension of the work presented in 

this paper would be a real-time ASL alphabet sign 

recognition system based on CNNs which may 

prove to be useful in many ASL-related areas and 

could even be generalized to signs and gestures of 

any kind for use in gesture-based computer control 

systems. 

The code used in this work is available on Kaggle. 

(https://www.kaggle.com/alexcostaluiz/asl-

alphabet-sign-recognition) 
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