
MINI PROJECT I: ASL ALPHABET IMAGE CLASSIFICATION

1

American Sign Language (ASL) Alphabet Image Classification Using

Convolutional Neural Networks

Alexander Costa

Department of Computer Science, University of Georgia

ALEXANDER.COSTA@UGA.EDU

ABSTRACT

Sign language is an important form of communication for people with impaired hearing and/or

speaking abilities. American Sign Language (ASL) is used by approximately 500,000 people in the

United States and is also used in Canada, Mexico, and many other countries. Among thousands of

other signs, ASL consists of unique poses or gestures for each letter of the English alphabet. Image

classification of these 26 signs constitutes a challenging task due to the complexity of ASL alphabet

signs, high interclass similarities, large intraclass variations, and frequent self-occlusion of the

hand. This work presents a method for ASL alphabet recognition using Convolutional Neural

Networks (CNN). Specifically, we investigate 18 variations of a basic CNN architecture to discover

which performs the task of ASL alphabet recognition with highest accuracy. To train our models,

the ASL Alphabet dataset by Akash Nagaraj, consisting of 87,000 ASL alphabet sign images, was

used. The ASL Alphabet Test dataset by Dan Rasband, consisting of 870 alphabet sign images, was

used for model evaluation, as well. Of the 18 investigated models, the two top performing networks

were the 5 Convolutional Layer, 3 Pooling Layer network trained for 10 epochs (5Conv) and the 5

Convolutional Layer, 3 Pooling Layer networks with L2 Regularization trained for 15 epochs

(5Conv-L2-15Epoch), which achieved test accuracies of 0.4977 and 0.4897, respectively. Overall,

the 5Conv networks dominated networks using other combinations of convolutional or pooling

layers. For its defense against overfitting, we believe the 5Conv-L2-15Epoch to be of optimal

ability.

Index Terms: ASL, sign language recognition, image classification, neural networks, CNN

I. INTRODUCTION

IA. BACKGROUND INFORMATION

American Sign Language is a critically important

mode of communication for individuals with

impaired hearing or speaking abilities as it allows

for communication through visual cues alone. It is

widely used throughout the United States as well as

Canada, Mexico, and many other countries [1].

Despite its prevalence, communication between

ASL users and non-sign-language speakers is still a

considerably difficult problem. While professional

interpreters exist, they are often not readily

available and costly. An automatic ASL recognition

system could constitute a remarkable and especially

valuable advancement in the image recognition field

and the sign language world at large. Not only could

such a system ameliorate the difficulties of

communication between ASL and non-ASL

speakers but could facilitate numerous

advancements in the intersection between ASL and

human-computer interaction.

For decades, researchers have tried to solve the

challenging problem of sign language recognition.

Many proposed solutions rely on external devices,

such as depth cameras, sensors, gloves, or motion

capturing systems [1, 2]. Such constraints limit the

applicability of these solutions to environments

where these tools are available. Recently, given the

demonstrated success of deep learning methods on

computer vision tasks, focus has shifted to purely

vision-based sign recognition powered by deep

learning techniques. Being non-intrusive and

requiring only a basic phone camera or webcam to

mailto:alexander.costa@uga.edu

ALEXANDER COSTA

2

generate input, these methods have the potential to

be significantly more applicable and wide-reaching

than solution requiring external devices. Deep

learning-based solutions, however, suffer from a

lack of large-scale, public sign language databases

suitable for machine learning, as well as a weakened

ability to differentiate between interclass

similarities and increased susceptibility to self-

occlusions of the fingers or hands.

In this work, we address the need for a robust sign

language recognition system by focusing on the

simpler, though still challenging, task of ASL

alphabet image recognition using convolutional

neural networks.

IB. CONVOLUTIONAL NEURAL NETWORKS

Overview of Neural Networks

Neural networks (NNs) have long been applied to

image classification problems and have been shown

to perform quite well at the task compared to other

classification algorithms such as logistic regression,

support vector machines, random forests, and k-

nearest neighbors. Inspired by biologic neural

networks, NNs consist of multiple layers of fully

connected neurons each of which can be though of

as a single processing unit. Each neuron has

trainable weights and biases, the values of which

can be learned to provide desirable predictions or

classifications. The structure of a NN is broken

down into the input layer, a set of hidden layers

(with trainable weights and biases), and the output

layer which constitutes the prediction or

classification of input by the model. Figure 1

demonstrates the general structure of a NN.

Figure 1. The structure of a basic neural network. The input layer,

hidden layers, and output layer can take any desired shape.

Overview of Convolutional Neural Networks

Convolutional neural networks work in a similar

fashion to the neural networks described above but

incorporate several additions to the layer

architecture. At the basic level, the layer structure of

a CNN includes Convolutional Layers, Pooling

Layers, and Fully Connected Layers. Fully

Connected layers work in the same fashion as layers

in a NN, with each node of a layer connected to all

nodes of the previous layer. Convolution and

pooling constitute the major building blocks of a

CNN. They are responsible for extracting features

from the input image which can then be used by

Fully Connected layers to perform logical

classification of the input image. Figure 2 presents

the general structure of a CNN.

Figure 2. The structure of a basic convolutional neural network. The

convolutional and pooling layers perform feature extraction on the input

image followed by classification by the fully connected layers.

Convolutional Layers

The convolutional layers are the foundation of a

CNN. A convolution is a linear operation involving

the multiplication of a set of weights with a set of

input values, much like a traditional NN. In the

convolution process, each neuron takes input from

a rectangular n×n region of the previous layer called

the local receptive field and computes a scalar

product of the local receptive field with an array of

weights called a filter. This same filter is applied

over all n×n regions of the input layer resulting in a

2D array of output values which represent a filtering

of the input. This output is often called a feature

map.

Figure 3. The convolution process [3].

MINI PROJECT I: ASL ALPHABET IMAGE CLASSIFICATION

3

The filter weights are learned by the network to

extract specific features from the input layer. These

extracted features can range from simple lines to

basic shapes to complex structures like a human

hand. The systematic application of the same filter

across all sections of an input allows the filter the

opportunity to discover that feature anywhere in the

image, a capability known as translation invariance.

Convolutional layers are also not limited to learning

only one filter. Often, a convolutional layer learns

anywhere from 32 to 512 filters in parallel for a

given input. This gives that particular layer 32 to

512 different ways of extracting features from an

input which allows for specialization (e.g., the layer

may detect not only basic lines, but lines specific to

the training data used).

Furthermore, convolutional layers can be applied

not only to the input data, but also to the output of

other layers. The stacking of convolutional layers

allows for a hierarchical decomposition of the input.

The filters which operate directly on the input image

can extract low-level features such as lines, then

filters which operate on the output of these low-

level layers can extract features which combine

many low-level features like curves and shapes, all

the way up to complex structures like faces, animals,

hands, etc.

Pooling Layers

A problem with output feature maps from

convolutional layers is that they are sensitive to the

location of features in the input. In other words,

small variations in the position of a feature in the

input image will result in different feature maps. To

address this issue, CNNs often use Pooling Layers

to down sample the feature maps, making them

more robust to changes in the position of features in

the input image.

The Pooling Layer takes small rectangular blocks

(often 2×2) from the Convolutional Layer output

and down samples it. There are two common

pooling operations, average pooling and maximum

pooling, which calculate the average value or

maximum value for each block of the feature map,

respectively. In this work we universally use

maximum pooling for all our pooling layers.

Figure 4. The pooling process [3].

The result of using a pooling layer is a summarized

version of the features detected by the previous

convolutional layer. They afford a capacity called

local translation invariance to the network by

helping to make feature map representations

invariant to small translations in the input image.

Regularization Techniques

Because of their complexity and high number of

parameters, convolutional neural networks are

prone to overfitting their training data. Two

common regularization techniques to prevent

overfitting include Dropout and L2 regularization.

We use both in many of the models investigated in

this work. Dropout is a simple and effective

procedure in which a certain proportion of randomly

selected neurons do not participate in feedforward

or backpropagation during training. This process

simplifies the network and guards against

overfitting. L2 regularization works by updating the

cost function with a regularization term. This term

encourages weights to decay towards 0 which yields

simpler models resistant to overfitting their training

data.

IC. RESEARCH OBJECTIVES

Aim 1 – Construct a CNN which can accurately

classify ASL alphabet signs in real-world

environments.

Our primary research objective is summarized in

Aim 1 above. To achieve this objective, we construct

and train 18 CNN model variations on our training

and validation datasets. Each model will perform a

multiclass classification of input ASL alphabet sign

images as one of 29 classes, including the 26

ALEXANDER COSTA

4

English alphabet letters and 3 auxiliary classes,

SPACE, DELETE, and NOTHING (which may be

helpful for real-time classification applications).

After training and validation of the models, each

model is subject to a comparison of top-1 accuracies

on an unseen training dataset as an evaluation of

model performance.

The datasets used to train and test our models are

the ASL Alphabet dataset by Akash Nagaraj and the

ASL Alphabet Test dataset by Dan Rasband,

respectively. These datasets consist of labeled

200×200-pixel 3-channel RGB ASL alphabet sign

images which comprise 29 classes (26 for the letters

A-Z and the three aforementioned auxiliary classes).

Our training data consists of 87,000 images with

3,000 images per class, and our testing data consists

of 870 images with 30 images per class. Both

datasets are perfectly balanced, eliminating the need

for any dataset balancing. Before training, images

are subject to a resizing to 64×64 pixels and a pixel

rescaling factor of 1/255 to transform pixel values

to the range [0, 1].

After the preprocessing of our image sets, we

perform 18 identical experiments for each of the 18

CNN models investigated in this research. First the

training data is split into 90% training data and 10%

validation data, then each model is trained using

training and validation data, and finally each model

is evaluating against the testing dataset yielding the

top-1 accuracy scoring metric for each model.

Our results indicate that a 5 Convolution Layer, 3

Pooling Layer (5Conv) model is best suited to the

task of classifying ASL alphabet sign images. The

top two performing models were the 5Conv model

and the 5Conv model with L2 regularization

(5Conv-L2-15Epoch) which achieved test

accuracies of 0.4977 and 0.4897, respectively. Other

notable mentions include the 5Conv-15Epoch

model with a test accuracy of 0.4747, the 4Conv

model with a test accuracy of 0.4690, and the 6Conv

model with a test accuracy of 0.4517. All other

models achieved a test accuracy under 0.4500.

The remainder of this paper is broken into a number

of sections. Section II describes our training and test

datasets and discloses our data preprocessing

techniques in further detail. Section III describes our

experiments in further detail and provides our

experimental results in tabular form. Section IV

presents an analysis of our experimental results, and

finally section V provides a conclusion and

discussion of the paper at large.

II. DATA

IIA. INTRODUCTION

The datasets used in this work were based on the

American Manual Alphabet (AMA). Figure 5 shows

all hand positions of the alphabet.

Figure 5. Hand poses used for constructing each letter in the American

Manual Alphabet.

The datasets used for training and testing our

networks were comprised of static hand poses of

each letter from the alphabet, as well as hand poses

for a SPACE, DELETE and NOTHING class which

could prove to be helpful in real-time classification

applications. Gesture-based signs, J and Z, were

included in the training and testing datasets for

completeness despite their temporal dimension.

Static poses of these gesture-based signs taken at

different times along the gesture sequence were

used in both training and testing.

The training data, the ASL Alphabet dataset by

Akash Nagaraj, consists of 87,000 200×200-pixel 3-

channel RGB ASL alphabet sign images which

MINI PROJECT I: ASL ALPHABET IMAGE CLASSIFICATION

5

comprise 29 classes (26 for the letters A-Z and the

three aforementioned auxiliary classes). Each of the

29 classes contains 3,000 instances making a

perfectly balanced dataset.

The training data uses varied lighting schemes and

relative positioning for poses of each class. This

variation is crucial for the application of the trained

models to real world data which may exhibit any

number of lighting, positioning, or background

settings. Such variation enables the network to

discern truly distinguishing features between

classes instead of overfitting the particular interclass

variation of the training data. Though the training

data does provide variation in the form of lighting

schemes and relative positioning, it still suffers

greatly from excessive homogeneity. All images

were taken by the same signer against a relatively

static background. In ASL signing, there often

exists subtle variation in positioning between

different signers, not to mention regional and

cultural differences which manifest as positioning

variation between signers. With signer dependency

being one of the most blocking challenges of current

non-intrusive sign recognition approaches, the lack

of multiple signer representation in the training data

constitutes an enormous drawback to the

generalizability of our trained models. Furthermore,

the lack of background variation in our training data

constitutes yet another drawback to generalizability.

Backgrounds deviating strongly from those seen in

Figure 6 are likely to yield unexpected behavior

from our trained models.

Figure 6. Example training images from the ASL Alphabet dataset by

Akash Nagaraj with the true class label located above each image. Of

note is the varied lighting and positioning of each pose, but lack of

signer and background variation.

The testing data, the ASL Alphabet Test dataset by

Dan Rasband, consists of 870 200×200-pixel 3-

channel RGB ASL alphabet sign images which

comprise the same 29 classes as the training data.

Each of the 29 classes contains 30 instances making

a perfectly balanced dataset. The testing data also

makes the effort to use varied lighting schemes,

relative positioning, and backgrounds but still

suffers from the same homogeneity issues which

affect the training data. Figure 7 displays example

testing images from the ASL Alphabet Test dataset.

Figure 7. Example testing images from the ASL Alphabet Test dataset

by Dan Rasband with the true class label located above each image. Of

note is the varied lighting and positioning of each pose, but lack of

signer and background variation.

Both testing and training data were shared on

Kaggle.com for the express purpose of ASL

alphabet image classification.

IIB. PREPROCESSING

The training and testing datasets were quite clean

and required little preprocessing. Simple resizing

and rescaling preprocessing steps were applied to

the training and testing images. The 200×200-pixel

images were resized to 64×64 pixels to decrease the

number of parameters in each network which in turn

sped up training time. Pixel values fall in the range

of 0 to 255 which is not ideal for input values to a

neural network, so all pixel values are rescaled by a

factor of 1/255 giving a new pixel value range of 0

to 1.

ALEXANDER COSTA

6

IIC. PARTITIONING

The training data was randomly partitioned into

90% training and 10% validation sets to support

parameter tuning. Evaluation of models was

performed by testing models with the

aforementioned ASL Alphabet Test dataset

consisting of signs performed by a different signer

in foreign environments. The motivation behind

evaluating models with such disparate data is to

emphasize the goal of generalizability. It is a rather

trivial and ineffectual problem to classify signs

performed by a single signer in a static environment.

To classify signs performed by many signers in

varied environments, however, is a much more

valuable endeavor, so the dissimilar testing data is

used to encourage our models to search for

generalizable solutions.

III. EXPERIMENTS

For our experiments, we used the Python

programming language, TensorFlow machine

learning toolkit and Keras neural network library for

data preprocessing, model training and evaluation.

Experiments were performed on a cloud computing

engine with Tesla P100 16GB VRAM as GPU,

13GB RAM and 2-core Intel Xeon as CPU.

Following data preprocessing we constructed 18

different CNN models using a combination of

different convolutional layers, pooling layers,

image preprocessing, regularization techniques, and

number of training epochs. Model construction

proceeded in a systematic fashion in which 3-5

models were constructed and tested. Then, the most

promising model was further modified into another

3-5 models. The process was repeated until test

accuracies did not improve. The 18 CNN models are

summarized in Table 1.

A number of parameters were kept constant

throughout the experimental process. These

parameters include Convolutional Layer filter

dimensions of 4×4 and stride dimensions of 1×1.

Pooling Layers always used the maximum pooling

operation with a 2×2 pooling window.

Convolutional Layers and Fully Connected Layers

always utilize the rectified linear activation function

(ReLU), all L2 regularizations use a lambda of

0.0001, and all models use the Adam optimization

algorithm and a sparse categorical cross-entropy

loss function. Unless otherwise noted, all models

were trained in 10 epochs.

Table 1: 18 CNN Model Variations

Description Params

Base

A base model consisting of only Fully Connected Layers.

Input → Flatten → Fully Connected(32) → Output

394,205

1Conv

A model consisting of a single Convolutional Layer and a single Pooling Layer.

Input → Convolutional(16) → Pooling → Flatten → Fully Connected(32) → Output

462,573

2Conv

A model consisting of two Convolutional Layer and two Pooling Layers.

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Flatten → Fully Connected(64)

→ Output

357,069

3Conv

A model consisting of three Convolutional Layer and three Pooling Layers.

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Convolutional(64) → Pooling →

Flatten → Fully Connected(128) → Output

250,509

3Conv-NoPool

A model consisting of three Convolutional Layer and no Pooling Layers.

Input → Convolutional(16) → Convolutional(32) → Convolutional(64) → Flatten → Fully Connected(128)

→ Output

24,826,509

3Conv-Dropout 250,509

MINI PROJECT I: ASL ALPHABET IMAGE CLASSIFICATION

7

A model consisting of three Convolutional Layer, three Pooling Layers, and a Dropout Layer.

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Convolutional(64) → Pooling →

Dropout(0.2) → Flatten → Fully Connected(128) → Output

4Conv

A model consisting of four Convolutional Layer and four Pooling Layers.

Input → Convolutional(16) → Pooling → Convolutional(32) → Pooling → Convolutional(64) → Pooling →

Convolutional(128) → Pooling → Flatten → Fully Connected(256) → Output

213,517

5Conv

A model consisting of five Convolutional Layer and three Pooling Layers.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,621

6Conv

A model consisting of six Convolutional Layer and three Pooling Layers.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Convolutional(512) → Pooling → Flatten → Fully

Connected(1024) → Output

3,350,285

5Conv-Grayscale

A model consisting of five Convolutional Layer and three Pooling Layers with grayscale input images.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,109

5Conv-MoreFilters-Grayscale

A model consisting of five Convolutional Layer and three Pooling Layers with grayscale input images and

doubled output filters for each Convolutional layer.

Input → Convolutional(32) → Pooling → Convolutional(64) → Convolutional(128) → Pooling →

Convolutional(256) → Convolutional(512) → Pooling → Flatten → Fully Connected(1024) → Output

7,536,125

5Conv-Dropout

A model consisting of five Convolutional Layer, three Pooling Layers, and three Dropout Layers.

Input → Convolutional(16) → Pooling → Dropout(0.5) → Convolutional(32) → Convolutional(64) →

Pooling → Dropout(0.5) → Convolutional(128) → Convolutional(256) → Pooling → Dropout → Flatten →

Fully Connected(512) → Output

1,892,621

5Conv-L2

A model consisting of five Convolutional Layer and three Pooling Layers with L2 regularization on each

convolutional layer.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,621

5Conv-Dropout-L2

A model consisting of five Convolutional Layer, three Pooling Layers, and three Dropout Layers with L2

regularization on each convolutional layer.

Input → Convolutional(16) → Pooling → Dropout(0.5) → Convolutional(32) → Convolutional(64) →

Pooling → Dropout(0.5) → Convolutional(128) → Convolutional(256) → Pooling → Dropout → Flatten →

Fully Connected(512) → Output

1,892,621

5Conv-L2-5Epoch

A model consisting of five Convolutional Layer and three Pooling Layers with L2 regularization on each

convolutional layer and 5 epochs of training.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,621

5Conv-L2-15Epoch

A model consisting of five Convolutional Layer and three Pooling Layers with L2 regularization on each

convolutional layer and 15 epochs of training.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,621

5Conv-5Epoch

A model consisting of five Convolutional Layer and three Pooling Layers and 5 epochs of training.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,621

ALEXANDER COSTA

8

5Conv-15Epoch

A model consisting of five Convolutional Layer and three Pooling Layers and 15 epochs of training.

Input → Convolutional(16) → Pooling → Convolutional(32) → Convolutional(64) → Pooling →

Convolutional(128) → Convolutional(256) → Pooling → Flatten → Fully Connected(512) → Output

1,892,621

Table 1. The 18 CNN models with accompanying parameter counts. A number within parentheses following a layer name indicate the output

dimension in the case of Convolutional Layers and Fully Connected Layers, and the proportion of inactive neurons for Dropout Layers.

Following training, each model was tested against

the ASL Alphabet Test dataset for an estimation of

model performance. The results of this final test for

each model are given in Table 2. No model took a

prohibitive amount of time to complete training or

testing.

Table 2: Experimental Results for the 18 CNN Models

Name Training

Accuracy

Validation

Accuracy

Testing Accuracy Training

Time (s)

Testing

Time (s)

Base 0.0323 0.0331 0.0345 60 0

1Conv 0.9864 0.9791 0.0701 75 0

2Conv 0.9964 0.9959 0.1828 87 0

3Conv 0.9952 0.9954 0.3621 97 0

3Conv-NoPool 0.9946 0.9905 0.1575 261 0

3Conv-Dropout 0.9919 0.9980 0.3989 98 0

4Conv 0.9931 0.9926 0.4690 104 0

5Conv 0.9926 0.9977 0.4977 156 0

6Conv 0.9914 0.9956 0.4517 204 0

5Conv-Grayscale 0.9931 0.9939 0.3299 170 0

5Conv-MoreFilters-Grayscale 0.9916 0.9943 0.2586 300 0

5Conv-Dropout 0.9595 0.9894 0.3793 161 0

5Conv-L2 0.9935 0.9960 0.4195 161 0

5Conv-Dropout-L2 0.0344 0.0343 0.0345 163 0

5Conv-L2-5Epoch 0.9832 0.9893 0.4494 81 0

5Conv-L2-15Epoch 0.9931 0.9852 0.4897 241 0

5Conv-5Epoch 0.9882 0.9890 0.4414 76 0

5Conv-15Epoch 0.9927 0.9983 0.4747 229 0

Table 2. Experimental results for all 18 CNN models. The 2 models achieving the highest test accuracies are bolded.

The results indicate that a 5Conv model is best

suited to the task of classifying ASL alphabet sign

images. The top two performing models were the

5Conv model and the 5Conv model with L2

regularization (5Conv-L2-15Epoch) which

achieved test accuracies of 0.4977 and 0.4897,

respectively.

Most models except the trivial 1Conv and those

trained with only 5 epochs converged quickly to

0.9900+ training and validation accuracies but

many performed extremely poorly on the testing

dataset. As the number of convolutional layers used

increased, as did the performance on the testing

dataset until the 6Conv model which invariably

performed worse than the 5Conv model. Due to the

diminishing number of available inputs as more and

more layers are stacked and the limited input

dimensions of 64×64, we could not investigate

models with any more convolutional layers than

6Conv.

The elimination of Pooling Layers (3Conv-NoPool)

invariably diminished testing accuracies and the use

of Dropout Layers (3Conv-Dropout, 5Conv-

Dropout) slightly increased performance in the

3Conv-Dropout case but largely decreased

performance in the 5Conv-Dropout case.

Proceeding with the 5Conv model, the use of

grayscale input images were used to test whether

color was contributing valuable sign-discerning

information to the classifier or was being overfit by

MINI PROJECT I: ASL ALPHABET IMAGE CLASSIFICATION

9

the classifier and causing the relatively low testing

accuracies. The use of grayscale inputs invariably

diminished test accuracies and had no major effect

on training and validation accuracies, meaning color

did contribute valuable and generalizable sign-

discerning information to the network.

Given the large disparity between validation and

test accuracies, dropout and L2 regularization

techniques were tested with the 5Conv model in an

attempt to diminish any possible overfitting. Both

dropout and L2 regularization techniques invariably

decreased testing accuracy of the 5Conv model,

though the 5Conv model with L2 regularization

trained for an additional 5 epochs (for a total of 15)

had comparable performance to the 5Conv model.

The lack of improvement in testing accuracy when

using regularization techniques indicates that the

underlying causes for such low testing accuracies

must be something other than overfitting during

training.

IV. ANALYSIS

Despite extremely high training and validation

accuracies greater than 0.9900 for most models, we

were unable to achieve test accuracies greater than

0.5000 for any model investigated. Here we present

a number of hypotheses and potential remediations

for this disappointingly low testing accuracy.

First and foremost, our training/validation and

testing datasets are markedly dissimilar from one

another yet excessively homogenous within. As

discussed in Section II, our training set consists of

images from only one signer in a relatively static

environment. This homogeneity does not seem to

offer our models enough intraclass variability

information in order for them to generalize well to

other signers or environments, which is

demonstrated by our low testing accuracies. Ideally,

a training set consisting of signs by tens, if not

hundreds, of different signers in hundreds of

different lighting and background environments

would be used to account for all kinds of real-world

variability which our training set lacks. We

hypothesize that a larger, more varied training

dataset could offer many improvements to our

models’ accuracies.

On top of an excessively homogenous training

dataset, the classification of ASL alphabet signs

itself presents many obstacles due to high interclass

similarities. Many letter signs are extremely similar,

differing only by one finger’s position (G/H, K/V,

U/V, E/S, M/N/S/T) or even simply the rotation of

the hand (P/K, I/J, D/Z). Even a beginner ASL user

might mistake one of these letters for the other. To

see whether the CNN models were themselves

susceptible to these interclass similarities, we

investigate the confusion matrices of the top 2

models presented in Figures 8 and 9 below.

Figure 8. Confusion matrix for the 5Conv model.

Figure 9. Confusion matrix for the 5Conv-L2-15Epoch model.

Counts falling along the main diagonal are correctly

classified test images. Colored squares outside the

ALEXANDER COSTA

10

main diagonal constitute significant and habitual

mistakes in the model classification. Many

significant misclassifications do in fact correspond

with those class pairs having high interclass

similarities. For example, 15 Vs were classified as

Ks in both models. 5Conv classifies many Ss as Ms.

5Conv-L2-15Epoch classifies many DELETEs as

Qs, which share many similarities. Both models

misclassified Gs as Hs and both models misclassify

many Cs and Ds as Fs which all share a circle-like

structure from certain angles.

While a number of unexpected misclassifications

exist as well, it is clear that the test accuracies of the

best models suffer due to the high interclass

similarities between many classes. To accurately

discern between such similar classes our models

demand higher density input images which may

allow the model to differentiate similar classes more

easily through the increase in available information.

Higher density input images may also allow for the

use of more convolutional layers which could

strengthen our models’ classification abilities.

Some form of image segmentation procedure prior

to model training may also help the models

differentiate similar classes by focusing the areas of

interest (hand and fingers) and ignoring superfluous

data like background patterns.

V. CONCLUSION

Our work indicates that among many different

simple CNN architecture variations, the 5Conv

model, consisting of 5 Convolutional Layers and 3

Pooling Layers, performs best at ASL alphabet sign

classification. The 5Conv model with additional L2

regularization and trained for 15 epochs exhibits

comparable performance, as well. Although high

training and validation accuracies were easy to

attain, our models failed to reach even 0.5000

testing accuracy, with 5Conv achieving the highest

testing accuracy of 0.4977. It seems our models are

bottlenecked not by overfitting issues during

training as much as by the lack of signer and

background variation in our training dataset and by

high interclass similarities in the ASL alphabet.

Our findings present a number of opportunities for

the experiments herein to be continued and

extended. Firstly, the aggregation and preprocessing

of many more ASL alphabet datasets in addition to

those used in this work could be undertaken to

provide the models with much more varied, real-

world information and subsequently strengthen

their generalizability.

While a number of CNN architecture variations

were investigated, very little hyperparameter

optimizations were performed. It may prove useful

to investigate different input image dimensions, as

well as different filter and stride dimensions,

different L2 regularization lambdas, and different

optimizers and loss functions.

As previously mentioned, the addition of an image

segmentation process may greatly improve the

models’ classification abilities as well as increase

the types and variety of images for which the

models are able to work well (e.g., with image

segmentation, classification of full body images

may also work well since model attention could be

focused only to hands and fingers within the image).

Finally, a natural extension of the work presented in

this paper would be a real-time ASL alphabet sign

recognition system based on CNNs which may

prove to be useful in many ASL-related areas and

could even be generalized to signs and gestures of

any kind for use in gesture-based computer control

systems.

The code used in this work is available on Kaggle.

(https://www.kaggle.com/alexcostaluiz/asl-

alphabet-sign-recognition)

REFERENCES

[1] H. R. V. Joze and O. Koller, "MS-ASL: A large-

scale data set and benchmark for understanding

american sign language," arXiv preprint

arXiv:1812.01053, 2018.

[2] W. Tao, M. C. Leu, and Z. Yin, "American Sign

Language alphabet recognition using

Convolutional Neural Networks with multiview

augmentation and inference fusion,"

Engineering Applications of Artificial

Intelligence, vol. 76, pp. 202-213, 2018.

https://www.kaggle.com/alexcostaluiz/asl-alphabet-sign-recognition
https://www.kaggle.com/alexcostaluiz/asl-alphabet-sign-recognition

MINI PROJECT I: ASL ALPHABET IMAGE CLASSIFICATION

11

[3] C. Wang and Y. Xi, "Convolutional neural

network for image classification," Johns

Hopkins University Baltimore, MD, vol. 21218,

1997.

