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ABSTRACT 

Sign language is an important form of communication for people with impaired hearing and/or 

speaking abilities. One type of sign language, American Sign Language (ASL), is used by 

approximately 500,000 people in the United States and is also used in Canada, Mexico, and many 

other countries. Among thousands of other signs, ASL consists of unique poses or gestures for each 

letter of the English alphabet. Image classification of these 26 signs constitutes a significant and 

challenging task due to the complexity of ASL alphabet signs, high interclass similarities, large 

intraclass variations, and frequent self-occlusion of the hand. This work presents a method for ASL 

alphabet classification using MediaPipe Hands, a high-fidelity hand and finger tracking model, and 

a machine learning classifier, as well as the ASLScribe program for transcribing ASL alphabet 

signs to text in real-time. Specifically, we investigate the performance four different machine 

learning classifiers (logistic regression, artificial neural networks, support vector machines, and k-

nearest neighbors) on the 3D coordinates of 21 different hand and finger landmarks provided by 

MediaPipe Hands at the task of ASL alphabet sign recognition and use one of the strongest 

classifiers for transcribing ASL alphabet signs in ASLScribe. To train our models, the ASL 

Alphabet dataset by Akash Nagaraj, consisting of 87,000 ASL alphabet sign images, was used. The 

ASL Alphabet Test dataset by Dan Rasband, consisting of 870 alphabet sign images, was used for 

model evaluation, as well. The results indicate that a support vector machine classifier, which 

achieved the overall highest testing accuracy of 0.9095, is best suited to the task of classifying ASL 

alphabet sign images from hand and finger landmarks, though all the models investigated were 

found to achieve an acceptable testing accuracy greater than 0.85. Support vector machines and 

logistic regression consistently performed better than artificial neural networks and k-nearest 

neighbors. 

Index Terms: American sign language, sign language recognition, sign language transcription, 

image classification, artificial neural networks, logistic regression, support vector machines, k-

nearest neighbors, ASL, ANN, SVM 

 

I. INTRODUCTION 

BACKGROUND INFORMATION 

American Sign Language is a critically important 

mode of communication for individuals with 

impaired hearing or speaking abilities as it allows 

for communication through visual cues alone. It is 

widely used throughout the United States as well as 

Canada, Mexico, and many other countries [1]. 

Despite its prevalence, communication between 

ASL users and non-sign-language speakers is still a 

considerably difficult problem. While professional 

interpreters exist, they are often not readily 

available and costly. An automatic ASL recognition 

system could constitute a remarkable and especially 

valuable advancement in the image recognition field 

and the sign language world at large. Not only could 

such a system ameliorate the difficulties of 

communication between ASL and non-ASL 

speakers but could facilitate numerous 

advancements in the intersection between ASL and 

human-computer interaction. 
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For decades, researchers have tried to solve the 

challenging problem of sign language recognition. 

Many proposed solutions rely on external devices, 

such as depth cameras, sensors, gloves, or motion 

capturing systems [1, 2]. Such constraints limit the 

applicability of these solutions to environments 

where these tools are available. Recently, given the 

demonstrated success of deep learning methods on 

computer vision tasks, focus has shifted to purely 

vision-based sign recognition powered by deep 

learning techniques. Being non-intrusive and 

requiring only a basic phone camera or webcam to 

generate input, these methods have the potential to 

be significantly more applicable and wide-reaching 

than solution requiring external devices. Deep 

learning-based solutions, however, suffer from a 

lack of large-scale, public sign language databases 

suitable for machine learning, as well as a weakened 

ability to differentiate between interclass 

similarities and increased susceptibility to self-

occlusions of the fingers or hands. 

In this work, we address the need for a robust sign 

language recognition system by focusing on the 

simpler, though still challenging, task of ASL 

alphabet image recognition and real-time 

transcription using MediaPipe Hands and an 

artificial neural network (ANN) classifier. 

RELATED WORKS 

Since the 1980s, researchers have tried to solve the 

problem of ASL recognition in many different 

ways. One of the first approaches, which has been 

reapproached may times over the years, relies on the 

use of a sensor glove that can track hand and finger 

movements [4, 5, 6, 7, 8]. Another approach was 

vision-based recognition, beginning in 1988 [9]. 

Since signing takes place in three dimensions, many 

researchers following a vision-based approach used 

depth information [10, 11] or multiple cameras [12]. 

In this paper, we address the need for a nonintrusive 

sign language recognition technique which could 

prove to be far more accessible and generalizable 

than methods which rely on external hardware. The 

use of only RGB channels for sign recognition has 

been approached before with traditional computer 

vision techniques [13, 14]. More recently, deep 

learning techniques have also been applied to the 

sign recognition problem with 2D- [15] and 3D-

CNNs [3, 16]. 

Most approaches struggle with a tradeoff between 

high classification accuracies and breadth of signs 

recognized. 

RESEARCH OBJECTIVES 

Aim 1 – Construct a machine learning model 

which can accurately classify ASL alphabet signs 

in real-world environments. 

Aim 2 – Construct a program capable of 

transcribing ASL alphabet signs into text in real-

time. 

Our primary research objectives are summarized in 

Aim 1 and Aim 2 above. To achieve these objectives, 

we proceeded in a sequential, two-phased approach. 

In phase 1, we investigated the performance of four 

different machine learning classifiers – logistic 

regression (LR), artificial neural networks (ANN), 

support vector machines (SVM), and k-nearest 

neighbors (KNN) – at the task of ASL alphabet sign 

classification using 21 3D hand and finger landmark 

coordinates provided by MediaPipe Hands. In phase 

2, we constructed a program using one of the 

strongest of the investigated classifiers which 

transcribes ASL alphabet signs into text in real-time. 

During phase 1, the four models were each 

constructed and trained on our training dataset. Each 

model performs a multiclass classification of ASL 

alphabet sign testing images as one of 28 classes, 

including the 26 English alphabet letters and 2 

auxiliary classes, SPACE, DELETE (which are 

helpful for the real-time transcription program). 

After training of the models, each model is subject 

to a comparison of top-1 accuracies on an unseen 

training dataset as an evaluation of model 

performance. 

The datasets used to train and test our models are 

the ASL Alphabet dataset by Akash Nagaraj and the 

ASL Alphabet Test dataset by Dan Rasband, 

respectively. These datasets consist of labeled 

200×200-pixel 3-channel RGB ASL alphabet sign 

images which comprise 28 classes (26 for the letters 
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A-Z and the two aforementioned auxiliary classes). 

Our unprocessed training data consists of 84,000 

images with 3,000 images per class, and our 

unprocessed testing data consists of 870 images 

with 30 images per class. Both datasets are perfectly 

balanced, eliminating the need for any dataset 

balancing. Before training, each image is fed into 

the MediaPipe Hands model, yielding 21 3D hand 

and finger landmark coordinates which are then 

used for training and testing of our models. Due to 

the poor lighting conditions of some training and 

test images, MediaPipe Hands did not recognize the 

existence of a hand in some input images. Any 

training or test images for which MediaPipe Hands 

did not recognize a hand were thrown out. This 

process yielded 61,115 training instances and 807 

testing instances. 

After the preprocessing of our image sets, we 

perform four identical experiments for each of the 

four classifiers investigated in this research. First, 

the training and testing data of 21 3D hand and 

finger landmark coordinates was split into two 

copies, wherein the coordinates of the first are raw 

proportions of the width and height of the input 

image and the coordinates of the second are 

normalized proportions of the width and height of 

the hand bounding box. Second, each model is 

trained with the training dataset and then evaluated 

against the testing dataset yielding the top-1 

accuracy scoring metric for each model. 

The results indicate that a support vector machine 

classifier, which achieved the overall highest testing 

accuracy of 0.9095, is best suited to the task of 

classifying ASL alphabet sign images from hand 

and finger landmarks. The top two performing 

models were the LR (accuracy = 0.8860) and ANN 

(accuracy = 0.8797) for raw input data and the SVM 

(accuracy = 0.9095) and LR (accuracy = 0.8959) for 

normalized input data. All models except KNN 

performed well on raw input data. After 

normalization, all models except ANNs, whose 

testing accuracy actually fell by one percentage 

point, saw an increase in performance, especially 

KNNs, whose testing accuracy increased by over 17 

percentage points. 

The remainder of this paper is broken into a number 

of sections. Section II describes our training and test 

datasets and discloses our data preprocessing 

techniques in further detail. Section III describes our 

experiments in further detail and provides our 

experimental results in tabular form. Section IV 

presents an analysis of our experimental results and 

the confusion matrices of each of our best models, 

Section V presents a short discussion about 

ASLScribe and finally section VI provides a 

conclusion and discussion of the paper at large. 

II. DATA 

INTRODUCTION 

The datasets used in this work were based on the 

American Manual Alphabet (AMA). Figure 1 shows 

all hand positions of the alphabet. 

 
Figure 1. Hand poses used for constructing each letter in the American 

Manual Alphabet. 

The datasets used for the training and testing of our 

models were comprised of static hand poses of each 

letter from the alphabet, as well as hand poses for 

SPACE and DELETE classes which are useful for 

the ASLScribe real-time transcription program. An 
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additional NOTHING class, consisting of only 

background images, was present in our training and 

testing dataset, but was not used for training or 

testing since the presence of a hand is already 

reported by the MediaPipe Hands model. Gesture-

based signs, J and Z, were included in the training 

and testing datasets for completeness despite their 

temporal dimension. Static poses of these gesture-

based signs taken at different times along the 

gesture sequence were used in both training and 

testing. 

The training data, the ASL Alphabet dataset by 

Akash Nagaraj, consists of 84,000 200×200-pixel 3-

channel RGB ASL alphabet sign images which 

comprise 28 classes (26 for the letters A-Z and the 

two aforementioned auxiliary classes). Each of the 

28 classes contains 3,000 instances making a 

perfectly balanced dataset. Figure 3 displays 

example training images from the ASP Alphabet 

dataset. 

 
Figure 2. Example training images from the ASL Alphabet dataset by 

Akash Nagaraj with the ground truth class label located above each 

image. Of note is the varied lighting and positioning of each pose, but 

lack of signer and background variation. 

Though the training data does provide variation in 

the form of lighting schemes and relative 

positioning, it still suffers greatly from excessive 

homogeneity. All images were taken by the same 

signer against a relatively static background. In ASL 

signing, there often exists subtle variation in 

positioning between different signers, not to 

mention regional and cultural differences which 

manifest as positioning variation between signers. 

With signer dependency being one of the most 

blocking challenges of current non-intrusive sign 

recognition approaches, the lack of multiple signer 

representation in the training data constitutes an 

enormous drawback to the generalizability of this 

training data. Furthermore, the lack of background 

variation in our training data constitutes yet another 

drawback to generalizability. To ameliorate some of 

these intrinsic shortcomings of the training dataset, 

we train our models not on the pixel color values of 

each input image but rather the 3D coordinates of 

21 hand and finger landmarks provided by the 

MediaPipe Hands model. By doing so, our models 

are not concerned with any lighting, background, or 

color information and are instead informed purely 

by the position and orientation of the hand and 

fingers. The homogeneity of the dataset no longer 

poses such a strong detriment to our models’ 

generalizability since our models may focus entirely 

on primary class discerning information instead of 

secondary or auxiliary information like colors, 

lighting, and backgrounds. 

 
Figure 3. Example testing images from the ASL Alphabet Test dataset 

by Dan Rasband with the ground truth class label located above each 

image. Of note is the varied lighting and positioning of each pose, but 

lack of signer and background variation. 
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The testing data, the ASL Alphabet Test dataset by 

Dan Rasband, consists of 840 200×200-pixel 3-

channel RGB ASL alphabet sign images which 

comprise the same 28 classes as the training data. 

Each of the 28 classes contains 30 instances making 

a perfectly balanced dataset. The testing data also 

makes the effort to use varied lighting schemes, 

relative positioning, and backgrounds but still 

suffers from the same homogeneity issues which 

affect the training data. Figure 3 displays example 

testing images from the ASL Alphabet Test dataset. 

Both testing and training data were shared on 

Kaggle.com for the express purpose of ASL 

alphabet image classification. 

PREPROCESSING 

The training and testing datasets were quite clean 

and required little preprocessing. Training and 

testing images were fed directly into the MediaPipe 

Hands model for mapping to 3D coordinates of 21 

hand and finger landmarks. Due to the poor lighting 

conditions of some training and test images, 

MediaPipe Hands did not recognize the existence of 

a hand in some input images. Any training or test 

images for which MediaPipe Hands did not 

recognize a hand were thrown out. This process 

yielded 61,115 training instances and 807 testing 

instances. Class frequencies were still very similar, 

so no dataset balancing was pursued. Since each of 

the 21 hand and finger landmarks was composed of 

an X, Y, and Z coordinate, each test or training 

instance was flattened into a 63-feature input space 

composed of the X, Y, and Z coordinate of all 21 

hand and finger landmarks. Figure 4 provides a 

diagram of each of the 21 landmarks. Figures 5 and 

6 display the 21 hand and finger landmarks 

overlaying their respective hand for the training and 

testing datasets. 

 
Figure 4. The 21 hand and finger landmarks. 

 
Figure 5. Hand and finger landmarks of the training set superimposed 

over their respective hands. Ground truth class labels are given above 

each image. 

 
Figure 6. Hand and finger landmarks of the testing set superimposed 

over their respective hands. Ground truth class labels are given above 

each image. 

PARTITIONING 

Raw landmark X and Y coordinates are given as a 

proportion of the width and height of the input 

image, respectively. Raw landmark Z coordinates 

are estimated relative depths. Since raw X and Y 

coordinates are dependent upon the position of the 

hand within the input image, the data is not invariant 
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to translation or scaling. An “A” sign that appears 

in the bottom left corner of the input image and an 

“A” sign that appears in the top right corner of the 

input image will have drastically different X and Y 

coordinates. With such high intraclass variability, 

our models are likely to suffer. To ameliorate this 

issue, we split the training and test datasets into two 

copies. The first of which contains raw coordinates 

based on the width and height of the input image, 

and the second of which contains normalized 

coordinates based on the bounding box surrounding 

the hand. More specifically, normalized X and Y 

coordinates are given as a proportion of the width 

and height of the bounding box surrounding the 

hand and fingers, respectively. The bounding box is 

calculated using the minimum and maximum 

landmark in the raw X and raw Y dimensions. The 

Z coordinate is not altered. These normalized 

coordinates are invariant to translation or scaling, so 

the coordinates of any sign of the same letter should 

be relatively similar. With intraclass variability 

minimized, our models may be able to perform 

better. 

Evaluation of models was performed by testing 

models with the aforementioned ASL Alphabet Test 

dataset consisting of signs performed by a different 

signer in foreign environments. The motivation 

behind evaluating models with such disparate data 

is to emphasize the goal of generalizability. It is a 

rather trivial and ineffectual problem to classify 

signs performed by a single signer in a static 

environment. To classify signs performed by many 

signers in varied environments, however, is a much 

more valuable endeavor, so the dissimilar testing 

data is used to encourage our models to search for 

generalizable solutions. 

III.  EXPERIMENTS 

For our experiments, we used the Python 

programming language, Scikit-Learn and 

TensorFlow machine learning toolkits and Keras 

neural network library for data preprocessing, 

model training and evaluation. Experiments were 

performed on a cloud computing engine with 16GB 

RAM and 2-core Intel Xeon CPU. 

Following data preprocessing we constructed four 

different classifiers: a logistic regression classifier, 

an artificial neural network classifier, a support 

vector machine classifier, and a k-nearest neighbors 

classifier. Table 1 presents an overview of each of 

these four models and their parameters. 

Table 1: Investigated Classifiers 

Name Parameters Toolkit 

Logistic Regression SAG solver, 1,000 max 

iterations 

Scikit-Learn 

Artificial Neural Network 

3 fully connected hidden layers. 

 

Input(63) → Fully Connected(128) → Fully Connected(96) → 

Fully Connected(64) → Output(28) 

ReLU activation function, 

ADAM optimizer, 

Categorical Cross-Entropy 

loss, 10 epoch training, 

28,604 total parameters 

TensorFlow 

Support Vector Machine RBF kernel Scikit-Learn 

K-Nearest Neighbors K=15 Scikit-Learn 

Table 1. The four investigated classifiers with accompanying parameters. A number within parentheses following a layer name indicate the output 

dimension in the case of Fully Connected Layers. All models were instantiated with the default parameters of their respective toolkit unless 

otherwise noted in the Parameters column. 

Following training, each model was tested against 

hand and finger landmarks of the ASL Alphabet 

Test dataset for an estimation of model 

performance. The results of this final test for each 

model are given in Table 2. No model took a 

prohibitive amount of time to complete training or 

testing. 
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Table 2: Experimental Results for the Four Classifiers 

Input Data Name 
Training 

Accuracy 

Testing 

Accuracy 

Training 

Time (s) 

Testing 

Time (s) 

Raw 

Logistic Regression 

Artificial Neural Network 

Support Vector Machine 

K-Nearest Neighbors 

0.9216 

0.9568 

0.9439 

0.9407 

0.8860 

0.8797 

0.8761 

0.7113 

30.05 

22.92 

120.16 

2.86 

0 

0 

0 

0 

Normalized 

Logistic Regression 

Artificial Neural Network 

Support Vector Machine 

K-Nearest Neighbors 

0.9316 

0.9586 

0.9602 

0.9629 

0.8959 

0.8634 

0.9095 

0.8835 

51.14 

23.20 

55.25 

2.56 

0 

0 

0 

0 

Table 2. Experimental results for all four classifiers. The models achieving the highest test accuracies for each input data type are bolded.

The results indicate that a support vector machine 

classifier, which achieved the overall highest testing 

accuracy of 0.9095, is best suited to the task of 

classifying ASL alphabet sign images from hand 

and finger landmarks. The top two performing 

models were the LR (accuracy = 0.8860) and ANN 

(accuracy = 0.8797) for raw input data and the SVM 

(accuracy = 0.9095) and LR (accuracy = 0.8959) for 

normalized input data. 

Practically speaking, logistic regression, artificial 

neural networks, and support vector machines all 

performed well on raw input data though SVMs 

consistently took 4-5 times longer training time than 

the LR or ANN models. After normalization, all 

models except ANNs, whose testing accuracy 

actually fell by one percentage point, saw an 

increase in performance, especially KNNs, whose 

testing accuracy increased by over 17 percentage 

points. All models held consistently higher training 

accuracies than testing accuracies, as is expected. 

Accuracies for ANNs are averaged over 10 runs to 

account for accuracy perturbations due to chance. 

IV. ANALYSIS 

Unlike in [3], where testing accuracies greater than 

0.50 were unachievable, we have easily and 

consistently achieved testing accuracies greater than 

0.85 and one model even achieves an accuracy over 

0.90. While these accuracies are acceptable for 

production use in ASLScribe, we believe higher 

testing accuracies may be achieved.  

First and foremost, our training and testing datasets 

are markedly dissimilar from one another yet 

excessively homogenous within. As discussed in 

Section II, our training set consists of images from 

only one signer in a relatively static environment. 

This homogeneity does not seem to offer our models 

enough intraclass variability information in order 

for them to generalize as well as they could to other 

signers, which is demonstrated by our lower testing 

accuracies. Ideally, a training set consisting of signs 

by tens, if not hundreds, of different signers would 

be used to account for all kinds of real-world 

variability which our training set lacks. We 

hypothesize that a larger, more varied training 

dataset could offer improvements to our models’ 

accuracies.  

On top of an excessively homogenous training 

dataset, the classification of ASL alphabet signs 

itself presents many obstacles due to high interclass 

similarities. Many letter signs are extremely similar, 

differing only by one finger’s position (G/H, K/V, 

U/V, E/S, M/N/S/T) or even simply the rotation of 

the hand (P/K, I/J, D/Z). Even a beginner ASL user 

might mistake one of these letters for the other. To 

see whether the investigated models were 

themselves susceptible to these interclass 

similarities, we investigate the confusion matrices 

of the best iteration of each model presented in 

Figure 7. 

Counts falling along the main diagonal are correctly 

classified test images. Colored squares outside the 

main diagonal constitute significant and habitual 

mistakes in the model classification. Many 

significant misclassifications do in fact correspond 

with those class pairs having high interclass 

similarities. For example, all four models have a 

high confusion rate between Ms and Ns, which 
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differ only by thumb position. All four models 

struggle, as well, at discerning between Vs and Ks 

which also differ only in thumb position. Likewise, 

all four models habitually predict Cs as Os and 

DELETEs as Qs, which share many similarities.

 
Figure 7. From left to right, top to bottom: The confusion matrices for the best logistic regression model, best artificial neural network model, best 

support vector machine model, and best k-nearest neighbors model.

From these abundant examples, it is clear that the 

test accuracies of the best models suffer due to the 

high interclass similarities between many classes. 

To accurately discern between such similar classes 

our models may need more hand and finger 

landmarks or a more accurate landmark tagging 

model to differentiate similar classes more easily 

through the increase in available and accurate 

information. Some domain specific heuristics could 

also be used to differentiate between these classes 

known to be very similar. For example, when 

differentiating between two classes of known 

similarity, we might add another pass to an 

algorithm to check a specific subset of landmarks 

for minute differences or apply a specific weighting 

scheme. 

V. ASLSCRIBE 

Our ASLScribe real-time ASL alphabet 

transcription program is a very simple extension of 

the work completed in this paper. Using the 

MediaPipe Hands JavaScript API and the 
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TensorFlow JavaScript API we supply a real-time 

feed of webcam frames to the MediaPipe Hands 

model which yields the 21 landmark coordinates 

discussed in Section II. These landmarks are then 

fed into the artificial neural network investigated in 

Section III which, in turn, yields a character 

prediction. Upon sign chance, the previous 

character is written to a buffer. Users also have the 

option to sign a DELETE or SPACE character 

which performs a delete operation or inserts a space 

character, respectively. 

The artificial neural network classifier was chosen 

over the logistic regression and support vector 

machine classifiers even though the ANN has a 

worse testing accuracy performance because of the 

ease of use of the Tensorflow JavaScript API. The 

LR and SVM classifiers were implemented in 

Scikit-Learn, which lacks a JavaScript API. 

The ASLScribe program is hosted on the authors 

personal website (https://alexcostaluiz.com/asl-

classification/). 

VI. CONCLUSION 

Our work indicates that among many different 

simple machine learning classifiers, the support 

vector machine performs best at ASL alphabet sign 

classification using hand and finger landmark 

coordinates. All of the investigated models were 

able to achieve acceptable testing accuracies greater 

than 0.85, with the support vector machine classifier 

being the only model to achieve a testing accuracy 

greater than 0.90. Various hyperparameter tuning 

procedures for all models could not increase the 

testing accuracy beyond 0.90. It seems our models 

are mostly bottlenecked by the lack of signer 

variation in our training dataset and by high 

interclass similarities in the ASL alphabet. 

Our findings present a number of opportunities for 

the experiments herein to be continued and 

extended. Firstly, the aggregation and preprocessing 

of many more ASL alphabet datasets in addition to 

those used in this work could be undertaken to 

provide the models with much more varied, real-

world information and subsequently strengthen 

their generalizability. 

Though a fair amount of hyperparameter tuning was 

attempted on each of the four models investigated, 

we feel it may prove useful to investigate more even 

model variations and even other classifiers (e.g., 

random forest classifier), in general. 

Finally, a natural extension of the work presented in 

this paper would be to incorporate more ASL signs 

beyond the manual alphabet into the real-time 

ASLScribe program so that users can express 

themselves more freely and efficiently. 

Furthermore, developing a temporally sensitive 

model (e.g., recurrent neural networks) so that more 

complex gestures may be detected would be of great 

use. 
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